Remembering the past and recognizing the limits of science …

A recent article in the Guardian reports on a debate at University College London (1) on whether to rename buildings because the people honored harbored odious ideological and political positions. Similar debates and decisions, in some cases involving unacceptable and abusive behaviors rather than ideological positions, have occurred at a number of institutions (see Calhoun at Yale, Sackler in NYC, James Watson at Cold Spring Harbor, Tim Hunt at the MRC, and sexual predators within the National Academy of Sciences). These debates raise important and sometimes troubling issues.

When a building is named after a scientist, it is generally in order to honor that person’s scientific contributions. The scientist’s ideological opinions are rarely considered explicitly, although they may influence the decision at the time.  In general, scientific contributions are timeless in that they represent important steps in the evolution of a discipline, often by establishing a key observation, idea, or conceptual framework upon which subsequent progress is based – they are historically important.  In this sense, whether a scientific contribution was correct (as we currently understand the natural world) is less critical than what that contribution led to. The contribution marks a milestone or a turning point in a discipline, understanding that the efforts of many underlie disciplinary progress and that those contributors made it possible for others to “see further.” (2)

Since science is not about recognizing or establishing a single unchanging capital-T-Truth, but rather about developing an increasingly accurate model for how the world works, it is constantly evolving and open to revision.  Working scientists are not particularly upset when new observations lead to revisions to or the abandonment of ideas or the addition of new terms to equations.(3)

Compare that to the situation in the ideological, political, or religious realms.  A new translation or interpretation of a sacred text can provoke schism and remarkably violent responses between respective groups of believers. The closer the groups are to one another, the more horrific the levels of violence that emerge often are.  In contrast, over the long term, scientific schools of thought resolve, often merging with one another to form unified disciplines. From my own perspective, and not withstanding the temptation to generate new sub-disciplines (in part in response to funding factors), all of the life sciences have collapsed into a unified evolutionary/molecular framework.  All scientific disciplines tend to become, over time, consistent with, although not necessarily deducible from, one another, particularly when the discipline respects and retains connections to the real (observable) world.(4)  How different from the political and ideological.

The historical progression of scientific ideas is dramatically different from that of political, religious, or social mores.  No matter what some might claim, the modern quantum mechanical view of the atom bears little meaningful similarity to the ideas of the cohort that included Leucippus and Democritus.  There is progress in science.  In contrast, various belief systems rarely abandon their basic premises.  A politically right- or left-wing ideologue might well find kindred spirits in the ancient world.  There were genocidal racists, theists, and nationalists in the past and there are genocidal racists, theists, and nationalists now.  There were (limited) democracies then, as there are (limited) democracies now; monarchical, oligarchical, and dictatorial political systems then and now; theistic religions then and now. Absolutist ideals of innate human rights, then as now, are routinely sacrificed for a range of mostly self-serving or politically expedient reasons.  Advocates of rule by the people repeatedly install repressive dictatorships. The authors of the United States Constitution declare the sacredness of human rights and then legitimized slavery. “The Bible … posits universal brotherhood, then tells Israel to kill all the Amorites.” (Phil Christman). The eugenic movement is a good example; for the promise of a genetically perfect future, existing people are treated inhumanely – just another version of apocalyptic (ends justify the means) thinking. 

Ignoring the simpler case of not honoring criminals (sexual and otherwise), most calls for removing names from buildings are based on the odious ideological positions espoused by the honored – typically some version of racist, nationalistic, or sexist ideologies.  The complication comes from the fact that people are complex, shaped by the context within which they grow up, their personal histories and the dominant ideological milieu they experienced, as well as their reactions to it.  But these ideological positions are not scientific, although a person’s scientific worldview and their ideological positions may be intertwined. The honoree may claim that science “says” something unambiguous and unarguable, often in an attempt to force others to acquiesce to their perspective.  A modern example would be arguments about whether climate is changing due to anthropogenic factors, a scientific topic, and what to do about it, an economic, political, and perhaps ideological question.(5)

So what to do?  To me, the answer seems reasonably obvious – assuming that the person’s contribution was significant enough, we should leave the name in place and use the controversy to consider why they held their objectionable beliefs and more explicitly why they were wrong to claim scientific justification for their ideological (racist / nationalist / sexist / socially prejudiced) positions.(6)  Consider explicitly why an archeologist (Flinders Petrie), a naturalist (Francis Galton), a statistician (Karl Pearson), and an advocate for women’s reproductive rights (Marie Stopes) might all support the non-scientific ideology of eugenics and forced sterilization.  We can use such situations as a framework within which to delineate the boundaries between the scientific and the ideological. 

Understanding this distinction is critical and is one of the primary justifications for why people not necessarily interested in science or science-based careers are often required to take science courses.  Yet all too often these courses fail to address the constraints of science, the difference between political and ideological opinions, and the implications of scientific models.  I would argue that unless students (and citizens) come to understand what constitutes a scientific idea or conclusion and what reflects a political or ideological position couched in scientific or pseudo-scientific terms, they are not learning what they need to know about science or its place in society.  That science is used as a proxy for Truth writ large is deeply misguided. It is much more important to understand how science works than it is to remember the number of phyla or the names of amino acids, the ability to calculate the pH of a solution, or to understand processes going on at the center of a galaxy or the details of a black hole’s behavior.  While sometimes harmless, misunderstanding science and how it is used socially can result in traumatic social implications, such as drawing harmful conclusions about individuals from statistical generalizations of populations, avoidable deaths from measles, and the forced “eugenic” sterilization of people deemed defective.  We should seek out and embrace opportunities to teach about these issues, even if it means we name buildings after imperfect people.  

footnotes:

  1. The location of some of my post-doc work.
  2. In the words of Isaac Newton, “If I have seen further than others, it is by standing upon the shoulders of giants.”
  3.  Unless, of course, the ideas and equations being revised or abandoned are one’s own. 
  4.  Perhaps the most striking exception occurs in physics on the subjects of quantum mechanics and relativity, but as I am not a physicist, I am not sure about that. 
  5.  Perhaps people are “meant” to go extinct. 
  6.  The situation is rather different outside of science, because the reality of progress is more problematic and past battles continue to be refought.  Given the history of Reconstruction and the Confederate “Lost Cause” movement [see PBS’s Reconstruction] following the American Civil War, monuments to defenders of slavery, no matter how admirable they may have been in terms of personal bravery and such, reek of implied violence, subjugation, and repression, particularly when the person honored went on to found an institution dedicated to racial hatred and violent intimidation [link]. There would seem little doubt that a monument in honor of a Nazi needs to be eliminated and replaced by one to their victims or to those who defeated them.

On teaching genetics, social evolution and understanding the origins of racism

Links between genetics and race crop up periodically in the popular press (link; link), but the real, substantive question, and the topic of a number of recent essays (see Saletan. 2018a. Stop Talking About Race and IQ) is whether the idea of “race” as commonly understood, and used by governments to categorize people (link), makes scientific sense.  More to the point, do biology educators have an unmet responsibility to modify and extend their materials and pedagogical approaches to address the non-scientific, often racist, implications of racial characterizations.  Such questions are complicated by a social geneticssecond factor, independent of whether the term race has any useful scientific purpose, namely to help students understand the biological (evolutionary) origins of racism itself, together with the stressors that lead to its periodic re-emergence as a socio-political factor. In times of social stress, reactions to strangers (others) identified by variations in skin color or overt religious or cultural signs (dress), can provoke hostility against those perceived to be members of a different social group.  As far as I can tell, few in the biology education community, which includes those involved in generating textbooks, organizing courses and curricula, or the design, delivery, and funding of various public science programs, including PBS’s NOVA, the science education efforts of HHMI and other private foundations, and programs such as Science Friday on public radio, directly address the roots of racism, roots associated with biological processes such as the origins and maintenance of multicellularity and other forms of social organization among organisms, involved in coordinating their activities and establishing defenses against social cheaters and processes such as cancer, in an organismic context (1).  These established defense mechanisms can, if not recognized and understood, morph into reflexive and unjustified intolerance, hostility toward, and persecution of various “distinguishable others.”  I will consider both questions, albeit briefly, here. 


Two factors have influenced my thinking about these questions.  The first involves the design of the biofundamentals text/course and its extension to include topics in genetics (2).  This involved thinking about what is commonly taught in genetics, what is critical for students to know going forward (and by implication what is not), and where materials on genetic processes best fit into a molecular biology curriculum (3).  While engaged in such navel gazing there came an email from Malcolm Campbell describing student responses to the introduction of a chapter section on race and racism in his textbook Integrating Concepts in Biology.  The various ideas of race, the origins of racism, and the periodic appearance of anti-immigrant, anti-religious and racist groups raise important questions – how best to clarify what is an undeniable observation, that different, isolated, sub-populations of a species can be distinguished from one another (see quote from Ernst Mayr’s 1994 “Typological versus Population thinking” ), from the deeper biological reality, that at the level of the individual these differences are meaningless. In what I think is an interesting way, the idea that people can be meaningfully categorized as different types of various platonic ideals (for example, as members of one race or the other) based on anatomical / linguistic differences between once distinct sub-populations of humans is similar to the dichotomy between common wisdom (e.g. that has influenced people’s working understanding of the motion of objects) and the counter-intuitive nature of empirically established scientific ideas (e.g. Newton’s laws and the implications of Einstein’s theory of general relativity).  What appears on the surface to be true but in fact is not.  In this specific case, there is a pressure toward what Mayr terms “typological” thinking, in which we class people into idealized (platonic) types or races ().   

As pointed out most dramatically, and repeatedly, by Mayr (1985; 1994; 2000), and supported by the underlying commonality of molecular biological mechanisms and the continuity of life, stretching back to the last universal common ancestor, there are only individuals who are members of various populations that have experienced various degrees of separation from one another.  In many cases, these populations have diverged and, through geographic, behavioral, and structure adaptations driven by natural, social, and sexual selection together with the effects of various events, some non-adaptive, such as bottlenecks, founder effects, and genetic drift, may eventually become reproductively isolated from one another, forming new species.  An understanding of evolutionary principles and molecular mechanisms transforms biology from a study of non-existent types to a study of populations with their origins in common, sharing a single root – the last universal common ancestor (LUCA).   Over the last ~200,000 years the movement of humans first within Africa and then across the planet  has been impressive ().  These movements have been accompanied by the fragmentation of human populations. Campbell and Tishkoff (2008) identified 13 distinct ancestral African populations while Busby et al (2016) recognized 48 sub-saharan population groups.  The fragmentation of the human population is being reversed (or rather rendered increasingly less informative) by the effects of migration and extensive intermingling ().   

    Ideas, such as race (and in a sense species), try to make sense of the diversity of the many different types of organisms we observe. They are based on a form of essentialist or typological thinking – thinking that different species and populations are completely different “kinds” of objects, rather than individuals in a population connected historically to all other living things. Race is a more pernicious version of this illusion, a pseudo-scientific, political and ideological idea that postulates that humans come  in distinct, non-overlapping types (quote  again, from Mayr).  Such a weird idea underlies various illogical and often contradictory legal “rules” by which a person’s “race” is determined.  

Given the reality of the individual and the unreality of race, racial profiling (see Satel,
2002) can lead to serious medical mistakes, as made clear in the essays by Acquaviva & Mintz (2010) “Are We Teaching Racial Profiling?”,  Yudell et al  (2016) “Taking Race out of Human Genetics”, and Donovan (2014) “The impact of the hidden curriculum”. 

The idea of race as a type fails to recognize the dynamics of the genome over time.  If possible (sadly not) a comparative analysis of the genome of a “living fossil”, such as modern day coelacanths and their ancestors (living more than 80 million years ago) would likely reveal dramatic changes in genomic DNA sequence.  In this light the fact that between 100 to 200 new mutations are introduced into the human genome per generation (see Dolgin 2009 Human mutation rate revealed) seems like a useful number to be widely appreciated by students, not to mention the general public. Similarly, the genomic/genetic differences between humans, our primate relatives, and other mammals and the mechanisms behind them (Levchenko et al., 2017)(blog link) would seem worth considering and explicitly incorporating into curricula on genetics and human evolution.  

While race may be meaningless, racism is not.  How to understand racism?  Is it some kind of political artifact, or does it arise from biological factors.  Here, I believe, we find a important omission in many biology courses, textbooks, and curricula – namely an introduction and meaningful discussion of social evolutionary mechanisms. Many is the molecular/cell biology curriculum that completely ignores such evolutionary processes. Yet, the organisms that are the primary focus of biological research (and who pay for such research, e.g. humans) are social organisms at two levels.  In multicellular organisms somatic cells, which specialize to form muscular, neural, circulatory and immune systems, bone and connective tissues, sacrifice their own inter-generational reproductive future to assist their germ line (sperm and/or eggs) relatives, the cells that give rise to the next generation of organisms, a form of inclusive fitness (Dugatkin, 2007).  Moreover, humans are social organisms, often sacrificing themselves, sharing their resources, and showing kindness to other members of their group. This social cooperation is threatened by cheaters of various types (POST LINK).  Unless these social cheaters are suppressed, by a range of mechanisms, and through processes of kin/group selection, multicellular organisms die and socially dysfunctional social populations are likely to die out.  Without the willingness to cooperate, and when necessary, self-sacrifice, social organization is impossible – no bee hives, no civilizations.  Imagine a human population composed solely of people who behave in a completely selfish manner, not honoring their promises or social obligations.  

A key to social interactions involves recognizing those who are, and who are not part of your social group.  A range of traits can serve as markers for social inclusion.  A plausible hypothesis is that the explicit importance of group membership and defined social interactions becomes more critical when a society, or a part of society, is under stress.  Within the context of social stratification, those in the less privileged groups may feel that the social contract has been broken or made a mockery of.  The feeling (apparent reality) that members of “elite” or excessively privileged sub-groups are not willing to make sacrifices for others serves as evidence that social bonds are being broken (4). Times of economic and social disruption (migrations and conquests) can lead to increased explicit recognition of both group and non-group identification.  The idea that outsiders (non-group members) threaten the group can feed racism, a justification for why non-group members should be treated differently from group members.  From this position it is a small (conceptual) jump to the conclusion that non-group members are somehow less worthy, less smart, less trustworthy, less human – different in type from members of the group – many of these same points are made in an op-ed piece by Judis. 2018. What the Left Misses About Nationalism.

That economic or climatic stresses can foster the growth of racist ideas is no new idea; consider the unequal effects of various disruptions likely to be associated with the spread of automation (quote from George Will ) and the impact of climate change on migrations of groups within and between countries (see Saletan 2018b: Why Immigration Opponents Should Worry About Climate Change) are likely to spur various forms of social unrest, whether revolution or racism, or both – responses that could be difficult to avoid or control.   

So back to the question of biology education – in this context understanding the ingrained responses of social creatures associated with social cohesion and integrity need to be explicitly presented. Similarly, variants of such mechanisms occur within multicellular organisms and how they work is critical to understanding how diseases such as cancer, one of the clearest forms of a cheater phenotype, are suppressed.  Social evolutionary mechanisms provide the basis for understanding a range of phenomena, and the ingrained effects of social selection may be seen as one of the roots of racism, or at the very least a contributing factor worth acknowledging explicitly.  

Thanks to Melanie Cooper and Paul Strode for comments. Minor edits 4 May 2019.

Footnotes:

  1. It is an interesting possibility whether the 1%, or rather the super 0.1% represent their own unique form of social parasite, leading periodically to various revolutions – although sadly, new social parasites appear to re-emerge quite quickly.
  2. A part of the CoreBIO-biofundamentals project 
  3. At this point it is worth noting that biofundamentals itself includes sections on social evolution, kin/group and sexual selection (see Klymkowsky et al., 2016; LibreText link). 
  4. One might be forgiven for thinking that rich and privileged folk who escape paying what is seen as their fair share of taxes, might be cast as social cheaters (parasites) who, rather than encouraging racism might lead to revolutionary thoughts and actions. 

Literature cited: 

Acquaviva & Mintz. (2010). Perspective: Are we teaching racial profiling? The dangers of subjective determinations of race and ethnicity in case presentations. Academic Medicine 85, 702-705.

Busby et  al. (2016). Admixture into and within sub-Saharan Africa. Elife 5, e15266.

Campbell & Tishkoff. (2008). African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genomics Hum. Genet. 9, 403-433.

Donovan, B.M. (2014). Playing with fire? The impact of the hidden curriculum in school genetics on essentialist conceptions of race. Journal of Research in Science Teaching 51: 462-496.

Dugatkin, L. A. (2007). Inclusive fitness theory from Darwin to Hamilton. Genetics 176, 1375-1380.

Klymkowsky et al., (2016). The design and transformation of Biofundamentals: a non-survey introductory evolutionary and molecular biology course..” LSE Cell Biol Edu pii: ar70.

Levchenko et al., (2017). Human accelerated regions and other human-specific sequence variations in the context of evolution and their relevance for brain development. Genome biology and evolution 10, 166-188.

Mayr, E. (1985). The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Cambridge, MA: Belknap Press of Harvard University Press.

Mayr, E. (1994). Typological versus population thinking. Conceptual issues in evolutionary biology, 157-160.

—- (2000). Darwin’s influence on modern thought. Scientific American 283, 78-83.

Satel, S. (2002). I am a racially profiling doctor. New York Times 5, 56-58.

Yudell et al., (2016). Taking race out of human genetics. Science 351, 564-565.

Can we talk scientifically about free will?

(edited and updated – 3 May 2019)

For some, the scientific way of thinking is both challenging and attractive.  Thinking scientifically leads to an introduction to, and sometimes membership in a unique community, who at their best are curious, critical, creative, and receptive to new and mind-boggling ideas, anchored in objective (reproducible) observations whose implications can be rigorously considered (1).  

What I particularly love about science is its communal aspect, within which the novice can point to a new observation or logical limitation, and force the Nobel laureate (assuming that they remain cognitively nimble, ego-flexible, and interested in listening) to rethink and revise there positions. Add to that the amazing phenomena that the scientific enterprise has revealed to us, the apparent age and size of the universe, the underlying unity, and remarkable diversity of life, the mind-bending behavior of matter-energy at the quantum level, and the apparent bending of space-time.  Yet, and not withstanding the power of the scientific approach, there are many essential topics that simply cannot be studied scientifically, and even more in which a range of practical constraints seriously limit our ability to come to meaningful conclusions.  

Perhaps acknowledging the limits of science is nowhere more important than in the scientific study of consciousness and self-consciousness.  While we can confidently dismiss various speculations (often from disillusioned and displaced physicists) that all matter is “conscious” (2), or mystical speculations on the roles of  super-natural forces (spirits and such), we need to recognize explicitly why studying consciousness and self-consciousness remains an extremely difficult and problematic area of research.  One aspect is that various scientific-sounding pronouncements on the impossibility or illusory nature of free will have far ranging and largely pernicious if not down right toxic social and personal  implications. Denying the possibility of free will implies that people are not responsible for their actions – and so cannot reasonably be held accountable.  In a broader sense, such a view can be seen as justifying treating people as disposable machines, to be sacrificed for some ideological or religious faith (3).  It directly contradicts the founding presumptions and aspirations behind the enterprise that is the United States of America, as articulated by Thomas Jefferson, a fragile bulwark against sacrificing individuals on the alter of often pseudoscientific or half-baked ideas. 

So the critical question is, is there a compelling reason to take pronouncements such as those that deny the reality of free will, seriously?   I think not.  I would assume that all “normal” human beings come to feel that there is someone (them) listening to various aspects of neural activity and that they (the listener) can in turn decide (or at the very least influence) what happens next, how they behave, what they think and how they feel.  All of which is to say that there is an undeniable (self-evident) reality associated with self-consciousness, as well as the feeling of (at least partial) control. 

This is not to imply that humans (and other animals) are totally in control of their thoughts and actions, completely “free” – obviously not.  First, one’s life history and the immediate situation can dramatically impact thoughts and behaviors, and much of that is based on luck and our responses to it – recognition of which is critical for developing empathy for ourselves and others (see The radical moral implications of luck in human life).  At the same time how we (our brain) experiences and interprets what our brain (also us) is “saying” to itself is based on genetically and developmentally shaped neural circuitry and signaling systems that influence the activities of complex ensembles of interconnected cellular systems – it is not neurons firing in deterministic patterns, since at the cellular level there are multiple stochastic processes that influence the behaviors of neural networks. There is noise (spontaneous activity) that impacts patterns of neuronal signaling, as well as stochastic processes, such as the timing of synaptic vesicle fusion events, the cellular impacts of diffusing molecules, and the monoallelic expression of genes (Deng et al., 2014; Zakharova et al., 2009) that can lead to subtle and likely functional differences between apparently identical cells of what appear to be the “same” type (for the implications of stochastic, single cell processes see: Biology education in the light of single cell/molecule studies).

So let us consider what it would take to make a fully deterministic model of the brain, without considering for the moment the challenges associated with incorporating the effects of molecular and cellular level noise. First there is the inherent difficulty (practical impossibility) of fully characterizing the properties of the living human brain, with its ~100,000,000,000 neurons, making ~7,000,000,000,000,000 synapses with one another, and interacting in various ways with ~100,000,000,000 glia that include non-neuronal astrocytes, oligodendrocytes, and immune system microglia (von Bartheld et al., 2016). These considerations ignore the recently discovered effects of the rest of the body (and its microbiome) on the brain (see Mayer et al., 2014; Smith, 2015).

Then there is the fact that measuring a system changes a system. In a manner analogous to the Heisenberg uncertainty principle, measuring aspects of neuronal function (or glial-neural interactions) will necessarily involve perturbations to the examined cell – recent studies have used a range of light emitting reporters to follow various aspects of neuronal activity (see Lin and Schnitzer, 2016), but these reporters perturb the system, if only through heating effects associated with absorbing and emitting light. Or if they, for example, serve to report the levels of intracellular calcium ions, involved in a range of cellular behaviors, they will necessarily influence calcium ion concentration, etc. Such a high resolution analysis, orders of magnitude higher than functional MRI (fMRI) studies (illustrated in the heading picture) would likely kill or cripple the person measured. The more accurate the measurement, the more perturbed, and the more altered future behaviors can be expected to be and the less accurate our model of the functioning brain will be.

There is, however, another more practical question to consider, namely are current neurobiological methods adequate for revealing how the brain works.  This point has been made in a particularly interesting way by Jonas & Kording (2017) in their paper “Could a neuroscientist understand a microprocessor?” – their analysis indicates the answer is “probably not”, even though such a processor represents a completely deterministic system.
 

If it is not possible to predict the system, then any discussion of free will or determinism is mute – unknowable and in an important scientific sense uninteresting, In a Popperian way (only the ability to predict and falsify predictions makes, at the end of the day, something scientific.  

I have little intelligent to say about artificial intelligence, since free will and intelligence are rather different things. While it is clearly possible to build a computer system (hardware and software) that can beat people at complex games such as chess (Kasparov, 2010; see AlphaZero) and GO (Silver et al., 2016), it remains completely unclear whether a computer can “want” to play chess or go in the same way as a human beings does.  We can even consider the value of evolving free will, as a way to confuse our enemies and seduce love interests or non-sexual social contacts. Brembs  (2010) presents an interesting paper on the evolutionary value of free will in lower organisms (invertebrates).

What seems clear to me (and considered before: The pernicious effects of disrespecting the constraints of science) is that the damage, social, emotional, and political, associated with claiming to have come to an “scientifically established” conclusion on topics that are demonstrably beyond the scope of scientific resolution, conclusions that make a completely knowable and strictly deterministic universe impossible to attain) should be clearly explained and understood to both the general public and stressed on and by the scientific and educational community.  They could be seen as a form of scientific malpractice that should be, quite rightly, dismissed out of hand. Rather than become the focus of academic or public debate, they are best ignored, and those who promulgate them, often out of careerist motivations (or just arrogance) should be pitied, rather than being promoted as public intellectuals to be taken seriously.A note on the header image: Parts of the header image are modified from images created by Tom Edwards (of WallyWare fame) and used by permission. The “Becky O” Bad Mom card by Roz Chast is used by permission.  Thanks to Michael Stowell for pointing out the work of Jonas and Kording.  Also it turns out that physicist Sabine Hossenfelder has recently had something to say on the subject.

Footnotes 

1. We won’t consider them at their worst, suffice it to say, they can embrace all that is wrong with humanity, leading to a range of atrocities.

3. The universe may be conscious, say prominent scientists

4. A common topic of the philosopher John Gray: such as Believing in Reason is Childish

Literature cited:

Brembs, B. (2010). Towards a scientific concept of free will as a biological trait: spontaneous actions and decision-making in invertebrates. Proceedings of the Royal Society of London B: Biological Sciences, rspb20102325.

Deng, Q., Ramsköld, D., Reinius, B. and Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193-196.

Kasparov, G. (2010). The chess master and the computer. The New York Review of Books 57, 16-19.

Lin, M. Z. and Schnitzer, M. J. (2016). Genetically encoded indicators of neuronal activity. Nature neuroscience 19, 1142.

Jonas, E., & Kording, K. P. (2017). Could a neuroscientist understand a microprocessor?. PLoS computational biology, 13, e1005268.

Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. Journal of Neuroscience, 34, 15490-15496.

Silver et al. (2016). Mastering the game of Go with deep neural networks and tree search. nature 529, 484.

Smith, P. A. (2015). The tantalizing links between gut microbes and the brain. Nature News, 526, 312.

von Bartheld, C. S., Bahney, J. and Herculano‐Houzel, S. (2016). The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. Journal of Comparative Neurology 524, 3865-3895.

Zakharova, I. S., Shevchenko, A. I. and Zakian, S. M. (2009). Monoallelic gene expression in mammals. Chromosoma 118, 279-290.

Ideas are cheap, theories are hard

In the context of public discourse, there are times when one is driven to simple, reflexive and often disproportionate (exasperated) responses.  That happens to me whenever people talk about the various theories that they apply to a process or event.  I respond by saying (increasingly silently to myself), that what they mean is really that they have an idea, a model, a guess, a speculation, or a comforting “just-so” story. All too often such competing “theories” are flexible enough to explain (or explain away) anything, depending upon one’s predilections. So why a post on theories?  Certainly the  point as been made before (see Ghose. 2013. “Just a Theory”: 7 Misused Science Words“). Basically because the misuse of the term theory, whether by non-scientists, scientists, or science popularizers, undermines understanding of, and respect for the products of the scientific enterprise.  It confuses hard won knowledge with what are often superficial (or self-serving) opinions. When professors, politicians, pundits, PR flacks, or regular people use the word theory, they are all too often, whether consciously or not, seeking to elevate their ideas through the authority of science.    

So what is the big deal anyway, why be an annoying pain in the ass (see Christopher DiCarlo’s video), challenging people, making them uncomfortable, and making a big deal about something so trivial.  But is it really trivial?  I think not, although it may well be futile or quixotic.  The inappropriate use of the word theory, particularly by academics, is an implicit attempt to gain credibility.  It is also an attack on the integrity of science.  Why?  Because like it or not, science is the most powerful method we have to understand how the world works, as opposed to what the world or our existence within the world means.  The scientific enterprise, abiding as it does by explicit rules of integrity, objective evidence, logical and quantifiable implications, and their testing has been a progressive social activity, leading to useful knowledge – knowledge that has eradicated small pox and polio (almost) and produced iPhones, genetically modified organisms, and nuclear weapons.  That is not to say that the authority of science has not been repeatedly been used to justify horrific sociopolitical ideas, but those ideas have not been based on critically evaluated and tested scientific theories, but on variously baked ideas that claim the support of science (both the eugenics and anti-vaccination movements are examples).   

Modern science is based on theories, ideas about the universe that explain and predict what we will find when we look (smell, hear, touch) carefully at the world around us.  And these theories are rigorously and continually tested, quantitatively – in fact one might say that the ability to translate a theory into a quantitative prediction is one critical hallmark of a real versus an ersatz (non-scientific) theory [here is a really clever approach to teaching students about facts and theories, from David Westmoreland 

So where do (scientific) theories come from?  Initially they are guesses about how the world works, as stated by Richard Feynman and the non-scientific nature of vague “theories”.  Guesses that have evolved based on testing, confirmation, and where wrong – replacement with more and more accurate, logically well constructed and more widely applicable constructs – an example of the evolution of scientific knowledge.  That is why ideas are cheap, they never had, or do not develop the disciplinary rigor necessary to become a theory.  In fact, it often does not even matter, not really, to the people propounding these ideas whether they correspond to reality at all, as witness the stream of tweets from various politicians or the ease with which many apocalyptic predictions are replaced when they turn out to be incorrect.  But how is the average person to identify the difference between a (more or less half-baked) idea and a scientific theory?  Probably the easiest way is to ask, is the idea constantly being challenged, validated, and where necessary refined by both its proponents and its detractors.  One of the most impressive aspects of Einstein’s theory of general relativity is the accuracy of its predictions (the orbit of Mercury, time-dilation, and gravitational waves (link)), predictions that if not confirmed would have forced its abandonment – or at the very least serious revision.  It is this constant application of a theory, and the rigorous testing of its predictions (if this, then that) that proves its worth.  

Another aspect of a scientific theory is whether it is fecund or sterile.  Does its application lead to new observations that it can explain?  In contrast, most ideas are dead ends.  Consider the recent paper on the possibility that life arose outside of the Earth, a proposal known as pan-spermia (1) – “a very plausible conclusion – life may have been seeded here on Earth by life-bearing comets” – and recently tunneling into  the web’s consciousness in stories implying the extra-terrestrial origins of cephalopods (see “no, octopuses don’t come from outer space.”)  Unfortunately, no actual biological insights emerge from this idea (wild speculation), since it simply displaces the problem, if life did not arise here, how did it arise elsewhere?  If such ideas are embraced, as is the case with many religious ideas, their alteration often leads to violent schism rather than peaceful refinement. Consider, as an example, an idea had by an archaic Greek or two that the world was made of atoms. These speculations were not theories, since their implications were not rigorously tested.  The modern atomic theory has been evolving since its introduction by Dalton, and displays the diagnostic traits of a scientific theory.  Once introduced to explain the physical properties of matter, it led to new discoveries and explanations for the composition and structure of atoms themselves (electrons, neutrons, and protons), and then to the composition and properties of these objects, quarks and such (link to a great example.)   

Scientific theories are, by necessity, tentative (again, as noted by Feynman) – they are constrained and propelled by new and more accurate observations.  A new observation can break a theory, leading it to be fixed or discarded.  When that happens, the new theory explains (predicts) all that the old theory did and more.  This is where discipline comes in; theories must meet strict standards – the result is that generally there cannot be two equivalent theories that explain the same phenomena – one (or both) must be wrong in some important ways.  There is no alternative, non-atomic theory that explains the properties of matter.  

The assumption is that two “competing” theories will make distinctly different predictions, if we look (and measure) carefully enough. There are rare cases where two “theories” make the same predictions; the classic example is the Ptolemaic Sun-centered and the Copernican Earth-centered models of the solar system.  Both explained the appearances  of planetary motion more or less equally well, and so on that basis there was really no objective reason to choose between them.  In part, this situation arose from an unnecessary assumption underlying both models, namely that celestial objects moved in perfect circular orbits – this assumption necessitated the presence of multiple “epicycles” in both models.  The real advance came with Kepler’s recognition that celestial objects need not travel in perfect circular orbits, but rather in elliptical orbits; this liberated models of the solar system from the need for epicycles.  The result was the replacement of “theories of solar system movement” with a theory of planetary/solar/galactic motions”.  

Whether, at the end of the day scientific theories are comforting or upsetting, beautiful or ugly remains to be seen, but what is critical is that we defend the integrity of science and call out the non-scientific use of the word theory, or blame ourselve for the further decay of civilization (perhaps I am being somewhat hyperbolic – sorry).

notes: 

1. Although really, pan-oogenia would be better.  Sperm can do nothing without an egg, but an unfertilized egg can develop into an organism, as occurs with bees.