Going virtual without a net

Is the coronavirus-based transition from face to face to on-line instruction yet another step to down-grading instructional quality?

It is certainly a strange time in the world of higher education. In response to the current corona virus pandemic, many institutions have quickly, sometimes within hours and primarily by fiat, transitioned from face to face to distance (web-based) instruction. After a little confusion, it appears that laboratory courses are included as well, which certainly makes sense. While virtual laboratories can be built (see our own virtual laboratories in biology)  they typically fail to capture the social setting of a real laboratory.  More to the point, I know of no published studies that have measured the efficacy of such on-line experiences in terms of the ideas and skills students master.

Many instructors (including this one) are being called upon to carry out a radical transformation of instructional practice “on the fly.” Advice is being offered from all sides, from University administrators and technical advisors (see as an example Making Online Teaching a Success).  It is worth noting that much (all?) of this advice falls into the category of “personal empiricism”, suggestions based on various experiences but unsupported  by objective measures of educational outcomes – outcomes that include the extent of student engagement as well as clear descriptions of i) what students are expected to have mastered, ii) what they are expected to be able to do with their knowledge, and iii) what they can actually do. Again, to my knowledge there have been few if any careful comparative studies on learning outcomes achieved via face to face versus virtual teaching experiences. Part of the issue is that many studies on teaching strategies (including recent work on what has been termed “active learning” approaches) have failed to clearly define what exactly is to be learned, a necessary first step in evaluating their efficacy.  Are we talking memorization and recognition, or the ability to identify and apply core and discipline-specific ideas appropriately in novel and complex situations?

At the same time, instructors have not had practical training in using available tools (zoom, in my case) and little in the way of effective support. Even more importantly, there are few published and verified studies to inform what works best in terms of student engagement and learning outcomes. Even if there were clear “rules of thumb” in place to guide the instructor or course designer, there has not been the time or resources needed to implement these changes. The situation is not surprising given that the quality of university level educational programs rarely attracts critical analysis, or the necessary encouragement, support, and recognition needed to make it a departmental priority (see Making education matter in higher education).  It seems to me that the current situation is not unlike attempting to perform a complicated surgery after being told to watch a 3 minute youtube video. Unsurprisingly patient (student learning) outcomes may not be pretty.     

Much of what is missing from on-line instructional scenarios is the human connection, the ability of an instructor to pay attention to how students respond to the ideas presented. Typically this involves reading the facial expressions and body language of students, and through asking challenging (Socratic) questions – questions that address how the information presented can be used to generate plausible explanations or to predict the behavior of a system. These are interactions that are difficult, if not impossible to capture in an on-line setting.

While there is much to be said for active engagement/active learning strategies (see Hake 1998, Freeman et al 2014 and Theobald et al 2020), one can easily argue that all effective learning scenarios involve an instructor who is aware and responsive to students’ pre-existing knowledge. It is also important that the instructor has the willingness (and freedom) to entertain their questions, confusions, and the need for clarification (saying it a different way), or when it may be necessary to revisit important, foundational, ideas and skills – a situation that can necessitate discarding planned materials and “coaching up” students on core concepts and their application. The ability of the instructor to customize instruction “on the fly” is one of the justifications for hiring disciplinary experts in instructional positions, they (presumably) understand the conceptual foundations of the materials they are called upon to present. In its best (Socratic) form, the dialog between student and instructor drives students (and instructors) to develop a more sophisticated and metacognitive understanding of the web of ideas involved in most scientific explanations.

In the absence of an explicit appreciation of the importance of the human interactions between instructor and student, interactions already strained in the context of large enrollment courses, we are likely to find an increase in the forces driving instruction to become more and more about rote knowledge, rather than the higher order skills associated with the ability to juggle ideas, identifying those needed and those irrelevant to a specific situation.  While I have been trying to be less cynical (not a particularly easy task in the modern world), I suspect that the flurry of advice on how to carry out distance learning is more about avoiding the need to refund student fees than about improving students’ educational outcomes (see Colleges Sent Students Home. Now Will They Refund Tuition?)

Author: Mike Klymkowsky

I am a Professor of Molecular, Cellular, and Developmental Biology at the University of Colorado Boulder. Growing up in Pennsylvania, I earned a bachelors degree in biophysics from Penn State then moved to California and earned a Ph.D. from CalTech (working for a time at UCSF and the Haight-Ashbury Free Clinic). I was a Muscular Dystrophy Association post-doctoral fellow at University College London and the Rockefeller University before moving to Boulder. My research has involved a number of topics, including neurotransmitter receptor structure, cytoskeletal organization and ciliary function, neural crest formation, and signaling systems in the context of the clawed frog Xenopus laevis as well as biology education research, leading to the development of the Biological Concepts Instrument (BCI), a suite of virtuallaboratory activities, and biofundamentals, a re-designed introductory molecular biology course. I have a close collaboration with Melanie Cooper (@Michigan State) that has resulted in transformed (and demonstrably effective and engaging) course materials in general and organic chemistry known as CLUE: Chemistry, Life, the Universe & Everything. I was in the first class of Pew Biomedical Scholars and am a Fellow of the American Association for the Advancement of Science.

One thought on “Going virtual without a net”

  1. Having spent the last 5 years developing F2F lab courses that include authentic research components where students work their way through projects where they produce real data rather than filling out answer sheets, I am now faced with figuring out how to transform all of this to online in the next 10 days. I better go figure out where I left my magic wand.

    Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s