Ideas are cheap, theories are hard

In the context of public discourse, there are times when one is driven to simple, reflexive and often disproportionate (exasperated) responses.  That happens to me whenever people talk about the various theories that they apply to a process or event.  I respond by saying (increasingly silently to myself), that what they mean is really that they have an idea, a model, a guess, a speculation, or a comforting “just-so” story. All too often such competing “theories” are flexible enough to explain (or explain away) anything, depending upon one’s predilections. So why a post on theories?  Certainly the  point as been made before (see Ghose. 2013. “Just a Theory”: 7 Misused Science Words“). Basically because the misuse of the term theory, whether by non-scientists, scientists, or science popularizers, undermines understanding of, and respect for the products of the scientific enterprise.  It confuses hard won knowledge with what are often superficial (or self-serving) opinions. When professors, politicians, pundits, PR flacks, or regular people use the word theory, they are all too often, whether consciously or not, seeking to elevate their ideas through the authority of science.    

So what is the big deal anyway, why be an annoying pain in the ass (see Christopher DiCarlo’s video), challenging people, making them uncomfortable, and making a big deal about something so trivial.  But is it really trivial?  I think not, although it may well be futile or quixotic.  The inappropriate use of the word theory, particularly by academics, is an implicit attempt to gain credibility.  It is also an attack on the integrity of science.  Why?  Because like it or not, science is the most powerful method we have to understand how the world works, as opposed to what the world or our existence within the world means.  The scientific enterprise, abiding as it does by explicit rules of integrity, objective evidence, logical and quantifiable implications, and their testing has been a progressive social activity, leading to useful knowledge – knowledge that has eradicated small pox and polio (almost) and produced iPhones, genetically modified organisms, and nuclear weapons.  That is not to say that the authority of science has not been repeatedly been used to justify horrific sociopolitical ideas, but those ideas have not been based on critically evaluated and tested scientific theories, but on variously baked ideas that claim the support of science (both the eugenics and anti-vaccination movements are examples).   

Modern science is based on theories, ideas about the universe that explain and predict what we will find when we look (smell, hear, touch) carefully at the world around us.  And these theories are rigorously and continually tested, quantitatively – in fact one might say that the ability to translate a theory into a quantitative prediction is one critical hallmark of a real versus an ersatz (non-scientific) theory [here is a really clever approach to teaching students about facts and theories, from David Westmoreland 

So where do (scientific) theories come from?  Initially they are guesses about how the world works, as stated by Richard Feynman and the non-scientific nature of vague “theories”.  Guesses that have evolved based on testing, confirmation, and where wrong – replacement with more and more accurate, logically well constructed and more widely applicable constructs – an example of the evolution of scientific knowledge.  That is why ideas are cheap, they never had, or do not develop the disciplinary rigor necessary to become a theory.  In fact, it often does not even matter, not really, to the people propounding these ideas whether they correspond to reality at all, as witness the stream of tweets from various politicians or the ease with which many apocalyptic predictions are replaced when they turn out to be incorrect.  But how is the average person to identify the difference between a (more or less half-baked) idea and a scientific theory?  Probably the easiest way is to ask, is the idea constantly being challenged, validated, and where necessary refined by both its proponents and its detractors.  One of the most impressive aspects of Einstein’s theory of general relativity is the accuracy of its predictions (the orbit of Mercury, time-dilation, and gravitational waves (link)), predictions that if not confirmed would have forced its abandonment – or at the very least serious revision.  It is this constant application of a theory, and the rigorous testing of its predictions (if this, then that) that proves its worth.  

Another aspect of a scientific theory is whether it is fecund or sterile.  Does its application lead to new observations that it can explain?  In contrast, most ideas are dead ends.  Consider the recent paper on the possibility that life arose outside of the Earth, a proposal known as pan-spermia (1) – “a very plausible conclusion – life may have been seeded here on Earth by life-bearing comets” – and recently tunneling into  the web’s consciousness in stories implying the extra-terrestrial origins of cephalopods (see “no, octopuses don’t come from outer space.”)  Unfortunately, no actual biological insights emerge from this idea (wild speculation), since it simply displaces the problem, if life did not arise here, how did it arise elsewhere?  If such ideas are embraced, as is the case with many religious ideas, their alteration often leads to violent schism rather than peaceful refinement. Consider, as an example, an idea had by an archaic Greek or two that the world was made of atoms. These speculations were not theories, since their implications were not rigorously tested.  The modern atomic theory has been evolving since its introduction by Dalton, and displays the diagnostic traits of a scientific theory.  Once introduced to explain the physical properties of matter, it led to new discoveries and explanations for the composition and structure of atoms themselves (electrons, neutrons, and protons), and then to the composition and properties of these objects, quarks and such (link to a great example.)   

Scientific theories are, by necessity, tentative (again, as noted by Feynman) – they are constrained and propelled by new and more accurate observations.  A new observation can break a theory, leading it to be fixed or discarded.  When that happens, the new theory explains (predicts) all that the old theory did and more.  This is where discipline comes in; theories must meet strict standards – the result is that generally there cannot be two equivalent theories that explain the same phenomena – one (or both) must be wrong in some important ways.  There is no alternative, non-atomic theory that explains the properties of matter.  

The assumption is that two “competing” theories will make distinctly different predictions, if we look (and measure) carefully enough. There are rare cases where two “theories” make the same predictions; the classic example is the Ptolemaic Sun-centered and the Copernican Earth-centered models of the solar system.  Both explained the appearances  of planetary motion more or less equally well, and so on that basis there was really no objective reason to choose between them.  In part, this situation arose from an unnecessary assumption underlying both models, namely that celestial objects moved in perfect circular orbits – this assumption necessitated the presence of multiple “epicycles” in both models.  The real advance came with Kepler’s recognition that celestial objects need not travel in perfect circular orbits, but rather in elliptical orbits; this liberated models of the solar system from the need for epicycles.  The result was the replacement of “theories of solar system movement” with a theory of planetary/solar/galactic motions”.  

Whether, at the end of the day scientific theories are comforting or upsetting, beautiful or ugly remains to be seen, but what is critical is that we defend the integrity of science and call out the non-scientific use of the word theory, or blame ourselve for the further decay of civilization (perhaps I am being somewhat hyperbolic – sorry).

notes: 

1. Although really, pan-oogenia would be better.  Sperm can do nothing without an egg, but an unfertilized egg can develop into an organism, as occurs with bees.  

Humanized mice and porcinized people

A practical benefit, from a scientific and medical perspective, of the evolutionary unity of life (link) are the molecular and cellular similarities between different types of organisms. Even though humans and bacteria diverged more than 2 billion years ago (give or take), the molecular level conservation of key systems makes it possible for human insulin to be synthesized in and secreted by bacteria and pig-derived heart valves to be used to replace defective human heart valves (see link). Similarly, while mice, pigs, and people are clearly different from one another in important ways they have, essentially, all of the same body parts. Such underlying similarities raise interesting experimental and therapeutic possibilities.

A (now) classic way to study the phenotypic effects of human-specific versions of genes is to introduce these changes into a model organism, such as mice (for a review of human brain-specific human genes – see link).  A example of such a study involves the gene that encodes the protein foxp2, a protein involved in the regulation of gene expression (a transcription factor). The human foxp2  protein differs from the foxp2 protein in other primates at two positions;  these two amio acid changes alter activity of the human protein, that is the ensemble of genes that it regulates. That foxp2 has an important role in humans was revealed through studies of individuals in a family that displayed a severe language disorder linked to a mutation that disrupts the function of the foxp2 protein; individuals carrying a foxp2 gene with this mutation have speech apraxia, a “severe impairment in the selection and sequencing of fine oral and facial movements, the ability to break up words into their constituent phonemes, and the production and comprehension of word inflections and syntax” (cited in Bae et al, 2015).  Male mice that carry this foxp2 mutation display changes in the “song” that they sing to female mice (1), while mice carrying a humanized form of foxp2 display changes in “dopamine levels, dendrite morphology, gene expression and synaptic plasticity” in a subset of CNS neurons (2).  While there are many differences between mice and humans, such studies suggest that changes in foxp2 played a role in human evolution, and human speech in particular.

Another way to study the role of human genes using mouse as a model system is to generate what are known as chimeras, named after the creature in Greek mythology composed of parts of multiple organisms.  A couple of years ago, Goldman and colleagues (3) reported that human glial progenitor cells could, when introduced into immune-compromised mice (to circumvent tissue rejection), displace the mouse’s own glia, replacing them with human glia cells. Glial cells are the major non-neuronal component of the central nervous system. Once thought of as passive “support” cells, it is now clear that the two major types of glia cells, known as astrocytes and oligodendrocytes, play a number of important roles in neural functioning [back track post].  In their early studies, they found that the neurological defects associated with the shaker mutation, a mutation that disrupts the normal behavior of oligodendrocytes, could be rescued by the implantation of normal human glial progenitor cells (hGPCs)(4).  Such studies confirmed what was already known, that the shaker mutation disrupts the normal function of myelin, the insulating structure around axons that dramatically speeds the rate at which neuronal signals (action potentials) move down the axons and activate the links between neurons (synapses). In the central nervous system, myelin is produced by oligodendrocytes as they ensheath neuronal axons.  Human oligodendrocytes derived from hGPCs displace the mouse’s mutation carrying oligodendrocytes and rescued the shaker mouse’s mutation-associated neurological defect.

Subsequently, Goldman and associates used a variant of this approach to introduce hGPCs (derived from human embryonic stem cells) carrying either a normal or mutant version of the  Huntingtin protein, a protein associated with the severe neuronal disease Huntington’s chorea (OMIM: 143100)(5).  Their studies strongly support a model that locates defects associated with human Huntington’s disease to defects in glia.  Most recently, this same research group has generated hGPCs from patient-derived, induced pluripotent stem cells (patient-derived HiPSCs). In this case, the patients had been diagnosed with childhood-onset schizophrenia (SCZ) [link](6).  Skin biopsies were taken from both normal and children diagnosed with SCZ; fibroblasts were isolated, and reprogrammed to form HiPSCs. These HiPSCs were treated so that they formed hGPCs that were then injected into mice to generate chimeric (human glial/mouse neuronal) animals. The authors report systematic differences in the effects of control and SCZ-derived hGPCs; “SCZ glial mice showed reduced prepulse inhibition and abnormal behavior, including excessive anxiety, antisocial traits, and disturbed sleep”, a result that suggests that defects in glial behavior underlie some aspects of the human SCZ phenotype.

The use of human glia chimeric mice provides a powerful research tool for examining the molecular and cellular bases for a subset of human neurological disorders.  Does it raise a question of making mice more human?  Not for me, but perhaps I do not appreciate the more subtle philosophical and ethical issues involved. The mice are still clearly mice, most of their nervous systems are composed of mouse cells, and the overall morphology, size, composition, and organization of their central nervous systems are clearly mouse-derived and mouse-like. The situation becomes rather more complex and potentially therapeutically useful when one talks about generating different types of chimeric animals or of using newly developed genetic engineering tools (the CRISPR CAS9 system found in prokaryotes), that greatly simplify and improved the specificity of the targeted manipulation of specific genes (link).  In these studies the animal of choice is not mice, but pigs – which because of their larger size produce organs for transplant that are similar in size to the organs of people (see link).  While similar in size, there are two issues that complicate pig to human organ transplantation: first there is the human immune system mediated rejection of foreign  tissue and second there is the possibility that transplantation of porcine organs will lead to the infection of the human recipient with of porcine retroviruses.

The issue of rejection (pig into human), always a serious issue, is further exacerbated by the presence in pigs of a gene encoding the enzyme α-1,3 galactosyl transferase (GGTA1); this enzyme adds the gal-epitope to a number of cell surface proteins. The gal-epitope is “expressed on the tissues of all mammals except humans and subhuman primates, which have antibodies against the epitope” (7). The result is that pig organs provoke an extremely strong immune (rejection) response in humans.  The obvious technical fix to this (and related problems) is to remove the gal-epitope from pig cells by deleting the GGTA1 enzyme (see 8). It is worth noting that “organs from genetically engineered animals have enjoyed markedly improved survivals in non-human primates” (see Sachs & Gall, 2009).

The second obstacle to pig → human transplantation is the presence of retroviruses within the pig genome.  Now all vertebrate genomes, including those of humans, contain many inserted retroviruses (almost 50% of the human genome is retrovirus-derived sequence – an example of unintelligent design if ever there was one); mostly these endogenous retroviruses are “under control” and are normally benign (see 9). The concern, however, is that the retroviruses present in pig cells could be activated when introduced into humans. To remove (or minimize) this possibility, Niu et al set out to use the CRISPR CAS9 system to delete these porcine endogenous retroviral sequences (PERVs) from the pig genome; they appear to have succeeded, generating a number of genetically modified pigs without PERVs (see 10).  The hope is that organs generated from PERV-minus pigs from which antigen-generating genes, such as α-1,3 galactosyl transferase, have also been removed or inactivated together with more sophisticated inhibitors of tissue rejection, will lead to an essentially unlimited supply of pig organs that can be used for heart and other organ transplantation (see 11), and such alleviate the delays in transplantation, and so avoid deaths in sick people and the often brutal and criminal harvesting of organs carried out in some countries.

The final strategy being explored is to use genetically modified hosts and patient derived iPSCs  to generate fully patient compatible human organs. To date, pilot studies have been carried out, apparently successfully, using rat embryos with mouse stem cells (see 12 and 13), with some much more preliminary studies using pig embryos and human iPSCs (see 14).  The approach involves what is known as chimeric  embryos.  In this case, host animals are genetically modified so that they cannot generate the organ of choice. Typically this is done by mutating a key gene that encodes a transcription factor directly involved in formation of the organ; embryos missing pancreas, kidney, heart, or eyes can be generated.  In an embryo that cannot make these organs, which can be a lethal defect, the introduction of stem cells from an animal that can form these organs can lead to the formation of an organ composed primarily of cells derived from these cells.

At this point the strategy appears to work reasonably well for mouse-rat chimeras, which are much more closely related, evolutionarily, than are humans and pigs. Early studies on pig-human chimeras appear to be dramatically less efficient; at this point, Jun Wu has been reported as saying of human-pig chimeras that “we estimate [each had] about one in 100,000 human cells” (see 15), with the rest being pig cells.  The bottom line appears to be that there are many technical hurdles to over-come before this method of developing patient-compatible human organs becomes feasible.  Closer to reality are PERV-free/gal-antigen free pig-derived, human compatible organs. The reception of such life-saving organs by the general public, not to mention religious and philosophical groups that reject the consumption of animals in general, or pigs in particular, remains to be seen.

references cited

  1. A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice.
  2. A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice
  3. Modeling cognition and disease using human glial chimeric mice.
  4. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination.
  5. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease
  6. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia.
  7.  The potential advantages of transplanting organs from pig to man: A transplant Surgeon’s view
  8. see Sachs and Gall. 2009. Genetic manipulation in pigs. and Fisher et al., 2016. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
  9. Hurst & Magiokins. 2017. Epigenetic Control of Human Endogenous Retrovirus Expression: Focus on Regulation of Long-Terminal Repeats (LTRs)
  10. Nui et al., 2017. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9
  11. Zhang  2017. Genetically Engineering Pigs to Grow Organs for People
  12. Kobayashi et al., 2010. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells.
  13. Kobayashi et al., 2015. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation.
  14. Wu et al., 2017. Interspecies Chimerism with Mammalian Pluripotent Stem Cells
  15. Human-Pig Hybrid Created in the Lab—Here Are the Facts

After the March for Science, What Now?

Recently, I contributed to a project that turned healthy human tissues into an earlier stage of pancreatic cancer—a disease that carries a dismal 5-year survival rate of 5 percent.

 

When I described our project to a friend, she asked, “why in the world would you want to grow cancer in a lab?” I explained that by the time a patient learns that he has pancreatic cancer, the tumor has spread throughout the body. At that point, the patient typically has less than a year to live and his tumor cells have racked up a number of mutations, making clinical trials and molecular studies of pancreatic cancer evolution downright difficult. For this reason, our laboratory model of pancreatic cancer was available to scientists who wanted to use it to find the biological buttons that turn healthy cells into deadly cancer. By sharing our discovery, we wanted to enable others in developing drugs to treat cancer and screening tests to diagnose patients early. The complexity of this process demonstrates that science is a team effort that involves lots of time, money, and the brainpower of highly-trained individuals working together toward a single goal.

 

Many of the challenges we face today—from lifestyle diseases, to the growing strains of antibiotic-resistant superbugs in hospitals, to the looming energy crisis—require scientific facts and solutions. And although there’s never a guarantee of success, scientists persist in hopes that our collective discoveries will reverberate into the future. However, as a corollary, hindering scientific progress means a loss of possibilities.

 

Unfortunately, the deceleration of scientific progress seems likely possibility. In March, the White House released a document called “America First: A Budget Blueprint to Make America Great Again,” which describes deep cuts to some of the country’s most important funding agencies for science.

 

As it stands, the National Institutes of Health is set to lose nearly a fifth of its budget; the Department of Energy’s Office of Science, $900 million; and the Environmental Protection Agency, a 31.5 percent budget cut worth $2.6 billion. Imagine the discoveries that could have saved our lives or created jobs, which will instead languish solely as unsupported hypotheses in the minds of underfunded scientists.

 

Scientists cannot remain idle on the sidelines; we must be active in making the importance of scientific research known. Last weekend’s March on Science drew tens of thousands of people around more than 600 rallies across the world, but the challenge now lies in harnessing the present momentum and energy to make sustained efforts to maintain government funding for a wide range of scientific projects.

 

The next step is to get involved in shaping public opinion and policy. As it stands, Americans on both sides of the political spectrum have expressed ambivalence about the validity of science on matters ranging from climate change to childhood vaccinations. Academics can start tempering the public’s unease toward scientific authority and increase public support for the sciences by stepping off the ivory tower. Many researchers are already engaging with the masses by posting on social media, penning opinion articles, and appearing on platforms aimed at public consumption (Youtube channels, TED, etc). A researcher is her own best spokesperson in explaining the importance of her work and the scientific process; unfortunately, a scientist’s role as an educator in the classroom and community is often shoved out by the all-encompassing imperative to publish or perish. As a profession, we must become more willing to step out of our laboratories to engage with the public and educate the next generation of science-savvy citizens.

 

In addition, many scientists have expressed interest in running for office, including UC Berkeley’s Michael Eisen (who also a co-founder of PLOS). When asked by Science why he was considering a run for senate, Eisen responded:

 

“My motivation was simple. I’m worried that the basic and critical role of science in policymaking is under a bigger threat than at any point in my lifetime. We have a new administration and portions of Congress that don’t just reject science in a narrow sense, but they reject the fundamental idea that undergirds science: That we need to make observations about the world and make our decisions based on reality, not on what we want it to be. For years science has been under political threat, but this is the first time that the whole notion that science is important for our politics and our country has been under such an obvious threat.”

 

If scientists can enter into the house and senate in greater numbers, they will be able to inject scientific sense into the discussions held by members of legislature whose primary backgrounds are in business and law.

 

Science is a bipartisan issue that should not be bogged down by the whims of political machinations. We depend on research to address some of the most pressing problems of our time, and America’s greatness lies in part on its leadership utilizing science as an exploration of physical truths and a means of overcoming our present limitations and challenges.

 

 

Check out Yoo Jung’s book aimed at helping college students excel in science, What Every Science Student Should Know (University of Chicago Press)

From the Science March to the Classroom: Recognizing science in politics and politics in science

Jeanne Garbarino (with edits by Mike Klymkowsky)

Purely scientific discussions are hallmarked by objective, open, logical, and skeptical thought; they can describe and explain natural phenomena or provide insights into a broader questions. At the same time, scientific discussions are generally incomplete and tentative (sometimes for well understood reasons). True advocates of the scientific method appreciate the value of its skeptical and tentative approach, and are willing to revise even long-held positions in response to new, empirically-derived evidence or logical contradictions. Over time, science’s scope and conclusions have expanded and evolved dramatically; they provide an increasingly accurate working model of a wide range of processes, from the formation of the universe to the functioning of the human mind. The result is that the ubiquity of science’s impacts on society are clear and growing. However, discussing and debating the details of how science works, and the current consensus view on various phenomena, such as global warming or the causes of cancer or autism, is very different from discussing and debating how a scientific recommendation fits into a societal framework. As described in a recent National Academies Press report on Communicating Science Effectively  [link], “the decision to communicate science [outside of academia] always involves an ethical component. Choices about what scientific evidence to communicate and when, how, and to whom, are a reflection of values.”

Over the last ~150 years, the accelerating pace of advances in science and technology have enabled future sustainable development, but they have also disrupted traditional social and economic patterns. Closing coal mines in response to climate predictions (and government regulations) may be sensible when viewed broadly, but are disruptive to those who have, for generations, made a living mining coal. Similarly, a number of prognosticators have speculated on the impact of robotics and artificial intelligence on traditional socioeconomic roles and rules. Whether such impacts are worth the human costs is rarely explicitly considered and discussed in the public forum, or the classroom. As members of the scientific community, our educational and outreach efforts must go beyond simply promoting an appreciation of, and public support for science. They must also consider its limitations, as well as the potential ethical and disruptive effects on individuals, communities, and/or societies. Making policy decisions with large socioeconomic impacts based on often tentative models raises risks of alienating the public upon which modern science largely depends.

Citizens, experts or not, are often invited to contribute to debates and discussions surrounding science and technology at the local and national levels. Yet, many people are not provided with the tools to fully and effectively engage in these discussions, which involves critically analyzing the scope, resolution, and stability of scientific conclusions. As such, the acceptance or rejection of scientific pronouncements is often framed as an instrument of political power, casting a shadow on core scientific principles and processes, framing scientists as partisan players in a political game. The watering down of the role of science and science-based policies in the public sphere, and the broad public complacency associated with (often government-based, regulatory) efforts, is currently being challenged by the international March For Science effort. The core principles and goals of this initiative [link] are well articulated, and, to my mind, representative of a democratic society. However, a single march on a single day is not sufficient to promote a deep social transformation, and promote widespread dispassionate argumentation and critical thinking. Perspectives on how scientific knowledge can help shape current and future events, as well as the importance of recognizing both the implications and limits of science, are perspectives that must be taught early, often, and explicitly. Social or moral decisions are not mutually exclusive from scientific evidence or ideas, but overlap is constrained by the gates set by values that are held.

In this light, I strongly believe the sociopolitical nature of science in practice must be taught alongside traditional science content. Understanding the human, social, economic and broader (ecological) costs of action AND inaction can be used to highlight the importance of framing science in a human context. If the expectation is for members of our society to be able to evaluate and weigh in on scientific debates at all levels, I believe we are morally obligated to supply future generations with the tools required for full participation. This posits that scientists and science educators, together with historian, philosophers, and economists, etc., need to go beyond the teaching of simple facts and theories by considering how these facts and theories developed over time, their impact on people’s thinking, as well as the socioeconomic forces that shape societies. Highlighting the sociopolitical implications of science-based ideas in classrooms can also motivate students to take a greater interest in scientific learning in particular, and related social and political topics in general. It can help close the gap between what is learned in school and what is required for the critical evaluation of scientific applications in society, and how scientific ideas can and should be evaluated when it comes to social policy or person beliefs.

A “science in a social context” approach to science teaching may also address the common student question, “When will I ever use this?” All too often, scientific content in schools is presented in ways that are abstract, decontextualized, and can feel irrelevant to students. Such an approach can leave a student unable or unwilling to engage in meaningful and substantive discussions on the applications and limitations of science in society. The entire concept of including cost-benefit analyses when considering the role of science in shaping decisions is often over-looked, as if scientific conclusions are black and white. Furthermore, the current culture of science in classrooms leaves little room for students to assess how scientific information does and does not align with their cultural identities, often framing science as inherently conflicting or alien, forcing a choice between one way of seeing the world over the other, when a creative synthesis seems more reasonable. Shifting science education paradigms toward a strategy that promotes “education through science” (as opposed to “science through education”) recognizes student needs and motivations as critical to learning, and opens up channels for introducing science as something that is relevant and enriching to their lives. Centered on the German philosophy of Allgemeinbildung [link] that describes “the competence for participation in critical dialogue on currently important matters,” this approach has been found to be effective in motivating students to develop the necessary skills to implement empirical evidence when forming arguments and making decisions.

In extending the idea of the perceived value of science in sociopolitical debates, students can build important frameworks for effectively engaging with society in the future. A relevant example is the increasing accessibility of genome editing technology, which represents an area of science poised to deeply impact the future of society. In a recent report [link] on the ethics of genome editing, assembled by an panel of clinicians and scientists (experts), it is recommended that the United States should proceed — cautiously — with genome editing studies on human embryos. However, as pointed out [link], this panel failed to include ANY public participation in this decision. This effort, fundamentally ignores “a more conscious evaluation of how this impacts social standing, stigma and identity, ethics that scientists often tend to cite pro forma and then swiftly scuttle.” As this discussion increasingly shifts into the mainstream, it will be essential to engage with the public in ways that promote a more careful and thoughtful analysis of scientific issues [link], as opposed to hyperbolic fear mongering (as seen in regard to most GMO discussions)[link] or reserving genetic engineering to the hyper-affluent. Another, more timely example, involves the the level at which an individual’s genome be used to predict a future outcome or set of outcomes, and whether this information can be used by employers in any capacity [link]. By incorporating a clear description of how science is practiced (including the factors that influence what is studied, and what is done with the knowledge generated), alongside the transfer of traditional scientific knowledge, we can help provide future citizens with tools for critical evaluation as they navigate these uncharted waters.

It is also worth noting tcorrupted sciencehat the presentation of science in a sociopolitical contexts can emphasize learning of more than just science. Current approaches to education tend to compartmentalize academic subjects, framing them as standalone lessons and philosophies. Students go through the school day motions, attending English class, then biology, then social studies, then trigonometry, etc., and the natural connections among subject areas are often lost. When framing scientific topics in the context of sociopolitical discussions and debates, stu
dents have more opportunities to explore aspects of society that are, at face value, unrelated to science.

Drawing from lessons commonly taught in American History class, the Manhattan Project [link] offers an excellent opportunity to discuss the fundamentals of nuclear chemistry as well as sociopolitical implications of a scientific discovery. At face value, harnessing nuclear fission marked a dramatic milestone for science. However, when this technology was pursued by the United States government during World War II — at the urging of the famed physicist Albert Einstein and others — it opened up the possibility of an entirely new category of warfare, impacting individuals and communities at all levels. The reactions set off by the Manhattan Project, and the consequent 1945 bombing of Hiroshima and Nagasaki, are ones that are still felt in international power politics, agriculture, medicine, ecology, economics, research ethics, transparency in government, and, of course, the Presidency of the United States. The Manhattan Project represents an excellent case study on the relationship between science, technology, and society, as well as the project’s ongoing influence on these relationships. The double-edged nature often associated with scientific discoveries are important considerations of the scientific enterprise, and should be taught to students accordingly.

A more meaningful approach to science education requires including the social aspects of the scientific enterprise. When considering a heliocentric view of the solar system, it is worthwhile recognizing its social impacts as well as its scientific foundations (particularly before Kepler). If we want people to see science as a human enterprise that can inspire rather than dictate decisions and behaviors, it will require resifting how science — and scientists — are viewed in the public eye. As written here [link]. we need to restore the relationship between scientific knowledge and social goals by specifically recognizing how

'So... cutting my funding, eh? Well, I've got a pair of mutant fists that say otherwise!'
‘So… cutting my funding, eh? Well, I’ve got a pair of mutant fists that say otherwise!’

science can be used, inappropriately, to drive public opinion. As an example, in the context of CO2-driven global warming, one could (with equal scientific validity) seek to reduce CO2 generation or increase CO2 sequestration. Science does not tell us which is better from a human perspective (although it could tell us which is likely to be easier, technically). While science should inform relevant policy, we must also acknowledge the limits of science and how it fits into many human contexts. There is clearly a need for scientists to increase participation in public discourse, and explicitly consider the uncertainties and risks (social, economic, political) associated with scientific observations. Additionally, scientists need to recognize the limits of their own expertise.

A pertinent example was the call by Paul Ehrlich to limit, in various draconian ways, human reproduction – a political call well beyond his expertise. In fact, recognizing when someone has gone beyond what science can legitimately tell us [link] could help rebuild respect for the value of science-based evidence. Scientists and science educators need to be cognizant of these limits, and genuinely listen to the valid concerns and hesitations held by many in society, rather than dismiss them. The application of science has been, and will always be, a sociopolitical issue, and the more we can do to prepare future decision makers, the better society will be.

Jeanne Garbarino, PhD, Director of Science Outreach, The Rockefeller University, NY, NY

Jeanne earned herJGarbarino Ph.D. in metabolic biology from Columbia University, followed by a postdoc in the Laboratory of Biochemical Genetics and Metabolism at The Rockefeller University, where she now serves as Director of Science Outreach. In this role, she works to provide K-12 communities with equitable access to authentic biomedical research opportunities and resources. You can find Jeanne on social media under the handle @JeanneGarb.

Why Humanities Majors Should Take Science Courses

One recent Supreme Court decision with a huge implication for the future of science was the Association for Molecular Pathology v. Myriad Genetics. In a unanimous ruling, the Court stated that human genes may not be patented and drew a sharp distinction between DNA formed in nature and DNA synthesized in a laboratory. While the decision was a long-awaited victory, it also raised a few eyebrows due to the majority opinion’s statement that “A naturally occurring DNA segment is a product of nature and not patent-eligible merely because it has been isolated, but cDNA is patent eligible because it is not naturally occurring.”

 

Close, but no cigar. cDNA, or complementary DNA, do form naturally when retroviruses, such as HIV, use an enzyme called reverse transcriptase to convert their genomic RNA into DNA that can then be integrated into their infected hosts.

 

Adding to the confusion, Justice Clarence Thomas, who wrote the majority opinion, confirmed the naturalness of cDNA by stating that “the nucleotide sequence of cDNA is dictated by nature, not by the lab technician” while also stating that the laboratory technician “unquestionably creates something new when cDNA is made.” To acknowledge potential errors in the Court’s decision, former Justice Antonin Scalia issued a concurrence, saying that while the court had reached the right result, it had gone astray in “going into fine details of molecular biology” that he was unable to affirm on his own knowledge.

 

The scientific inaccuracies in the Court’s ruling, as well as Scalia’s acknowledgment, underscore the complicated relationship between science and the other institutions that govern our lives. With the breakneck pace of scientific discovery across disciplines, it is unsurprising to see the law and ethics lagging far behind.

 

However, given that science and technology affect every dimension of our lives, the resolution of many modern-day problems from personal health choices to the search for alternative fuels requires a considerable amount of input from the scientific field. Therefore, society must address the potential social and ethical challenges that arise from rapid scientific and technological innovation. These challenges include the preservation of rights and the maintenance of an informed citizenry.To keep the public educated about scientific advances, those in the humanities will play an integral role in both educating non-scientists and crafting policies that affect scientists. Specifically, future writers, journalists, lawyers and policy-makers must be well versed on the intricacies of science as well as its potential social and ethical impact in society.

 

This education is already occurring at a number of colleges and institutions, where a number of science departments offer courses for non-science majors who want to explore the sciences. For instance, at Dartmouth College (my alma mater), the biological details of the aforementioned court case would have been evident to students who had taken “Genes and Society.” Other institutions, such as the Massachusetts Institute of Technology OpenCourseWare offers a comprehensive list of courses in “science, technology, and society,” Harvard University offers a concentration in history and science, Brown University offers an interdisciplinary concentration in science and society, the University of Pennsylvania offers a major and a minor in science technology and society within its Department of History and Sociology of Science and Cornell University offers science and technology studies and allows biology majors to “combine biology with exposure to perspectives from the social sciences and humanities on the social, political and ethical aspects of modern biology.”

 

It is imperative that colleges educate their future graduates on sciences’ growing reach through the lens of the humanities. Society will increasingly look for graduates who are not only culturally and socially literate, but also knowledgeable in science and technology. All colleges and universities need to be mindful of the potential importance of science in all fields, lest it fail to bridge the widening gap between the sciences and the humanities.

 

A version of this article was previously published in The Dartmouth.

tiny book

 

Check out my new book aimed at helping college students excel in science, What Every Science Student Should Know (University of Chicago Press)

Guest post: can you help us identify this pipefish? Three HS students go to OSM ’16 looking for answers

Today we have a student post by guest  Kaelen Novak: Can you help us identify this pipefish? Three high school students go to Ocean Sciences 2016 looking for answers

 

The 2016 Ocean Science Meeting (OSM) of the American Geophysical Union took place in New Orleans, Louisiana, on February 21-25. This international event is the biannual meeting ground for Marine Biologists, Oceanographers, Environmental Scientists, Biochemists, Geologists, Archaeologists, Avian Specialists, and many other experts who come together to discuss the state of the world’s oceans and even some phenomenon on other planetary bodies. In addition to keynotes and panels, over three thousand posters spanned a display floor, as far as the eye can see from a skywalk.

And in the middle of all this were two friends and I from Saint Stanislaus, in Bay St. Louis, MS, the lone high school students in the crowd, having the experience of a lifetime.

photo
The Saint Stanislaus High School student team at OSM 16: Michael Sandoz, left; Kaelen Novak, center; Beau Girard, right.

We were there to present our own research as a poster at a Tuesday evening OSM ‘16 Youth Symposium, where we hoped to get some help with some unresolved questions in our study of a species of pipefish.

titan
Polar clouds, made of methane, on Titan (left) compared with polar clouds on Earth (right), which are made of water or water ice.

But before Tuesday night, we got to go to any of the other OSM sessions. I started with a panel discussing underwater hypoxic tidepools in West Coast kelp forests. Following a quick break for lunch, I then attended a fascinating lecture about hypoxia and the methane seas of Titan, the largest moon of Saturn. The highlight of this talk for me was hearing of the strange qualities of the methane seas on Titan, which showed that oceanography changes drastically on different planets and showed a way that astronomers and marine scientists can continue to collaborate.

Then it was time to present our own research.

Set up in the Great Hall lobby, the Youth Symposium was composed of fourteen students ranging from kindergarten to high school seniors presenting on a variety of topics, including: sea turtle night time orientation, jellyfish tracking, water quality data logging and other research projects.

Snip20160306_13 copyOur poster, available in its entirety at the bottom of this post, represented work that Beau Gerard, Michael Sandoz and I had done over six months to positively identify a species of pipefish caught in front of our school in Bay Saint Louis, Mississippi during a regular day of fieldwork. Since then, we’ve made observations and done research to determine its taxonomic name, to no avail. It was my science teacher at Saint Stanislaus High School, Mrs. Boudreaux, who suggested that we create an OSM ‘16 poster to get more scientific ideas on what procedures we could employ and people/places we might go to for help.

Even though the Youth Symposium posters were quite out of the way of the main poster hall, a large number of scientists from different fields ended up visiting our poster, including the Director of Education of the National Science Foundation (NSF), Liz Rom, and George Divoky, an expert on arctic birds. We received plenty of feedback and a few suggestions for determining the precise identification of our unknown pipefish. As a result, we are now seeking help from the Audubon Aquarium in New Orleans, who, it turns out, just opened a pipefish exhibit. We also got the names of other taxonomic services, such as EcoAnalysts Inc. (ecoanalysts.com), we could consult to see which species it may be, or if it could be a crossbreed, or even a new species.

Got any ideas?

If anyone reading this wants to help by making a suggestion of where to go for further information, or if might be able to tell us which type of pipefish we’ve found, please leave a comment after this post. Here, in the center, is an image of the pipefish we have, with the two other known species we’ve been comparing it to. 

dusky pipefish
Dustry pipefish – Sygnathus Floridae
Chain pipefish - Synathus Louisanae
Chain pipefish – Syngnathus Louisanae

 

The "mystery pipefish"
“Lofwyr” – Our mystery pipefish

A bonus day at OSM ‘16

After completing our Tuesday evening poster, my friends and I returned on Thursday, when the day’s theme was the global environment and various factors harming it. Plenary talks I heard covered research on the possible effects of undersea mining, the dangers of Pseudo nitzschia on the West Coast and elsewhere, and the effects of microplastics and their biodegradability in the ocean – compared to on land.

Along with these interesting topics, other posters were open to our perusal. My favorite by far was one titled “Where Wild Microbes Grow” by Kevin Kurtz (available for free download here: http://joidesresolution.org/node/2998). He has created a set of interactive pdf-based children’s books based around the various levels of the marine ecosystem. This creative approach to spreading scientific knowledge to the younger generations through interactive media will encourage children and adults alike to learn about our marine environments and foster a love for them, paving the way for the marine scientists and environmentalists of the future, much like the live-streams that the Nautilus crew conduct during their expeditions do.

I thoroughly enjoyed my experience at OSM ‘16, both presenting and exploring other research presented at the convention, along with meeting new people from all over the world who were equally as enthusiastic about their personal research. My colleagues and I hope to attend the next Ocean Sciences Meeting in 2018, this time as sophomore college students, when we hope to present more of our findings to the world.

Snip20160306_14 copy 

Guest post: Interpreting Lemurs

Chris Smith was one of the first people I met in Raleigh. He showed up at the hotel in a big van, carrying a clipboard with a list of 20 names.  

Chris and I had been talking before. We had discussed Sci-Ed projects via email. We chatted over a Southern breakfast of biscuits and gravy. I even made pushy requests (e.g., can I follow you around with a camera and microphone?), to which he consented with shy enthusiasm.

 That clipboard list of 20 names included mine. Chris took the group of 19 and I to a tour of the Duke Lemur Center. But it was on the tour that I witnessed a transformation in our host. Something about his tone of voice, posture, and eye contact had changed. Chris had morphed into a confident, lemur-authority science interpreter. 

Atop the tallest pine tree, Kizzy sat poised and tense. Then, like a skydiver jumping from a plane, she leapt from the branches. Arms and legs outstretched, she crashed through the tangle and landed with a big bear hug onto a small limb below. Black and white ruffed lemurs are not the most graceful of lemurs.

If you read Sci-Ed regularly, then we’ve met. I was the guide and narrator of Cristina’s Lemur Week videos (Part I and Part II). I work at the Duke Lemur Center, the world’s largest collection of lemurs outside of their native Madagascar. The Center houses over 250 animals on 70 acres in Durham, NC. I serve as the education specialist, and it’s my job to introduce people to the world of lemurs. I take small groups of visitors on guided tours of the facilities. Our goal is to get them close to the lemurs so they can see why lemurs are so special.

kizzy_r2
Kizzy, the black and white lemur, leaping through the forest. Photo courtesy of Duke Lemur Center/David Haring.

That morning, the tour group and I had been in the forested free-range enclosures for only a few minutes before the lemurs descended. As we watched Kizzy and her four sons come crashing down, I talked to the group about the lemurs who roam free in the forest. Lemurs are primates – the most ancient primates on Earth, in fact. Evolved more than 60 million years ago, lemurs found themselves in isolated Madagascar and over time adapted into more than 80 unique species, with characteristics and behaviors all their own. Today, lemurs are considered the most endangered group of mammals on the planet. More than 90% of all species are threatened with extinction. Some could disappear in as few a ten years.  Now surrounding us, the lemurs furiously clamored for their treats as the keeper tossed crunchy chow around. I took the opportunity to talk about the diet, foraging behavior and social interactions between lemurs. The visitors smiled, laughed and gasped while these ruffed lemurs ate, jumped, and squabbled over food.

A science interpreter facilitates learning

The role of an interpreter (that’s me) is to reveal the “awesome.” Interpretation in museums or zoos goes beyond reciting facts. It’s about building an emotional connection with the audience. Interpretation done well meets the audience intellectually and provokes their own curiosity. It’s a way of communicating that involves connecting the visitor to the resource through the experience. The goal is to promote action on the part of the participant: to learn more, share what they’ve learned with others or take action directly on the issue.

At the Lemur Center, I try to get visitors as close to the animals as possible while highlighting the different aspects of lemurs’ lives, research and conservation. When the blue-eyed black lemur stares at visitors, guests often comment on the beauty of the lemur’s blazing blue eyes. I can use that as a perfect opportunity. Only 4 primate species have individuals with blue eyes (one of them is humans), but only in blue-eyed black lemurs do each individual possess this trait. They’re also critically endangered, and their unique genetic distinction could disappear forever due to habitat loss. The Duke Lemur Center houses the only two breeding females in captivity.

Chris Smith talks about Madagascar to his tour group. Photo by Cristina Russo.
Chris Smith talks about Madagascar to his tour group. Photo by Cristina Russo.

The combination of fluffy, bright-eyed animals and a knowledgeable guide is magic for guest experience and education. Ballantyne et al. (2007) studied the impacts of different animal exhibits and interpretation schemes at zoos and found that when guests can see an active animal and they have someone to easily explain what they’re seeing, guests learn more. Interpretive programs have been shown to positively influence environmental awareness and conservation action in visitors to natural heritage sites (Zeppell 2008). These effects were discussed in Sci-Ed previously, here, here and here.

I conducted my own little research project at the Lemur Center and asked a few people about their experiences on the forest tour. Why did they visit? What did they like? What do they remember most? In the course of my conversations, no one would really own up to having learned anything. Still, they were able to tell me many lemur stories, including ring-tailed lemur stink fights, aye-ayes with rodent-like incisors, or a ruffed lemur’s loud, barking call. Guests were receiving information, but the emotional response to seeing the animals up close made them receptive to the information.

Kizzy and her family withdrew to the treetops to sunbathe. As I lead the guests out of the forest, they continue to ask me questions and talk about the experience. We still have more lemurs to meet, and I have more information to share. I’ll see their pictures on Instagram later in the afternoon – a sure sign:  they’ll be lemur lovers for life.

References

  1. Conservation learning in wildlife tourism settings: lessons from research in zoos and aquariums. R. Ballantyne, J. Packer, K. Hughes, L. Dierking. Environmental Education Research, Vol. 13, Iss. 3, 2007

  2. Education and Conservation Benefits of Marine Wildlife Tours: Developing Free-Choice Learning Experiences. Heather Zeppel, The Journal of Environmental Education. Vol. 39, Iss. 3, 2008


 

Featured image: A black blue-eyed lemur. Photo courtesy of Duke Lemur Center/David Haring.

Judging science fairs: 10/10 Privilege, 0/10 Ability

Every year, I make a point of rounding up students in my department and encouraging them to volunteer one evening judging our local science fair. This year, the fair was held at the start of April, and featured over 200 judges and hundreds of projects from young scientists in grades 5 through to 12, with the winners going on to the National Championships.

President Obama welcomes some young scientists to the White House | Photo via USDAGov
President Obama welcomes some young scientists to the White House | Photo via USDAGov

Perhaps the most rewarding part of volunteering your time, and the reason why I encourage colleagues to participate is when you see just how excited the youth are for their projects. It doesn’t matter what the project is, most of the students are thrilled to be there. Add to that how A Real Life Scientist (TM) wants to talk to them about their project? It’s a highlight for many of the students. As a graduate student, the desire to do science for science’s sake is something that gets drilled out of you quickly as you follow the Williams Sonoma/Jamie Oliver Chemistry 101 Cookbook, where you add 50 g Chemical A to 50 of Chemical B and record what colour the mixture turns. Being around  excitement based purely on the pursuit of science is refreshing.

However, the aspect of judging science fairs that I struggle most with is how to deal with the wide range of projects. How do you judge two projects on the same criteria where one used university resources (labs, mass spectrometers, centrifuges etc) and the other looked at how high balls bounce when you drop them. It becomes incredibly difficult as a judge to remain objective when one project is closer in scope to an undergraduate research project and the other is more your typical kitchen cabinet/garage equipment project. Even within two students who do the same project, there is variability depending on whether or not they have someone who can help them at home, or access to facilities through their school or parents social network.

As the title suggests, this is an issue of privilege. Having people at home who can help, either directly by providing guidance and helping do the project, or indirectly by providing access to resources, gives these kids a huge leg up over their peers. As Erin pointed out in her piece last year:

A 2009 study of the Canada-Wide Science Fair found that found that fair participants were elite not just in their understanding of science, but in their finances and social network. The study looked at participants and winners from the 2002-2008 Fairs, and found that the students were more likely to come from advantaged middle to upper class families and had access to equipment in universities or laboratories through their social connections (emphasis mine).

So the youth who are getting to these fairs are definitely qualified to be there – they know the project, and they understand the scientific method. They’re explaining advanced concepts clearly and understand the material. The problem becomes how does one objectively deal with this? You can’t punish the student because they used the resources available to them, especially if they show mastery of the concepts. But can you really evaluate them on the same stage and using the same criteria as their peers without access to those resources, especially when part of the criteria includes the scientific merit of the project?

The fair, to their credit, took a very proactive approach to this concern, which was especially prudent given the makeup of this area where some kids have opportunities and others simply don’t. Their advice was to judge the projects independently, and judge the kids on the strength of their presentation and understanding. But again, there’s an element of privilege behind this. The kids who have parents and mentors who can coach them and prepare them for how to answer questions, or even just give them an opportunity/push them to practice their talk, will obviously do better.

The science fair acts as a microcosm for our entire academic system, from undergrad into graduate and professional school and into later careers. The students who can afford to volunteer in labs over the summer during undergrad are more likely to make it into highly competitive graduate programs as they have “relevant experience,” while their peers who have to work minimum wage positions to pay tuition or student loans are going to be left behind. The system is structured to reward privilege – when was the last time an undergrad or graduate scholarship considered “work history” as opposed to “relevant work experience?” Most ask for a resume or curriculum vitae, where one could theoretically include that experience, but if the ranking criteria look for “relevant” work experience, which working at Starbucks doesn’t include, how do those students compete for the same scholarships? This is despite how working any job does help you develop various transferable skills including time management and conflict resolution. And that doesn’t even begin to consider the negative stigma many professors hold for this type of employment.

The question thus is: Are we okay with this? Are we okay with a system where, based purely on luck, some kids are given opportunities, while others aren’t? And if not, how do we start tackling it?

 

 

========================================

Disclaimer: I’ve focused on economic privilege here, but privilege comes in many different forms. I’m not going to wade into the other forms, but for some excellent reads, take a read of this, this and this.

Do lemurs like to move it-move it? (video)

Lemurs had their 15 minutes of fame, back when DreamWork’s Madagascar came out in 2005. This year it’s time for IMAX Island of Lemurs: Madagascar to shine a spotlight on this primates.

We discussed before how nature documentaries influence the public’s understanding of science, and mostly increase the general public’s science literacy. Which is why I was curious to test the effect of the Madagascar movie: what did it teach the general public? Did it result in the public’s new understanding of lemurs? During my visit to the Duke Lemur Center, I had the perfect opportunity to find out. During  the 40 minute car ride, I asked acting driver and education specialist Chris Smith. And here’s what he told me:

This is the second installment of our participation on Lemur Week. For Part I, click here.

Sci-Ed joins Lemur Week (video)

Their ghostly eyes are lovely windows to their souls.

Lemurs are primates – they have long tails, tree-climbing hands, and incredible curiosity. At least that’s what I encountered on my visit to the Duke Lemur Center (sponsored by Owen Software). Education specialist Chris Smith led me on an amazing tour. See below:

The Duke Lemur Center offers tours, similar to the one above. Their goal is to raise funds for research (Smith estimated that 10% of the center’s funds come from tours). Most of all, the center aims to educate the public and raise awareness about lemur conservation. And it seems to pay off: in 2013, they received 18,000 visitors (5,000 more than a previous record-breaking year). In addition to tours, the educational department is expanding to bring in even younger visitors, so conservation education can start earlier. The Duke Lemur Center now has a “primates for pre-schoolers program” for kids ages 3-5, and a “leaping lemurs summer science camp” for 6th and 8th graders from all over the country. For the grown-ups, there’s an “evening with the experts” with such curious topics as “are you smarter than a lemur?”.

Come back Wednesday for another video on Duke Lemur Center, when we’ll explore some of Chris Smith’s strategies when talking lemur science to the public.