From the Science March to the Classroom: Recognizing science in politics and politics in science

Jeanne Garbarino (with edits by Mike Klymkowsky)

Purely scientific discussions are hallmarked by objective, open, logical, and skeptical thought; they can describe and explain natural phenomena or provide insights into a broader questions. At the same time, scientific discussions are generally incomplete and tentative (sometimes for well understood reasons). True advocates of the scientific method appreciate the value of its skeptical and tentative approach, and are willing to revise even long-held positions in response to new, empirically-derived evidence or logical contradictions. Over time, science’s scope and conclusions have expanded and evolved dramatically; they provide an increasingly accurate working model of a wide range of processes, from the formation of the universe to the functioning of the human mind. The result is that the ubiquity of science’s impacts on society are clear and growing. However, discussing and debating the details of how science works, and the current consensus view on various phenomena, such as global warming or the causes of cancer or autism, is very different from discussing and debating how a scientific recommendation fits into a societal framework. As described in a recent National Academies Press report on Communicating Science Effectively  [link], “the decision to communicate science [outside of academia] always involves an ethical component. Choices about what scientific evidence to communicate and when, how, and to whom, are a reflection of values.”

Over the last ~150 years, the accelerating pace of advances in science and technology have enabled future sustainable development, but they have also disrupted traditional social and economic patterns. Closing coal mines in response to climate predictions (and government regulations) may be sensible when viewed broadly, but are disruptive to those who have, for generations, made a living mining coal. Similarly, a number of prognosticators have speculated on the impact of robotics and artificial intelligence on traditional socioeconomic roles and rules. Whether such impacts are worth the human costs is rarely explicitly considered and discussed in the public forum, or the classroom. As members of the scientific community, our educational and outreach efforts must go beyond simply promoting an appreciation of, and public support for science. They must also consider its limitations, as well as the potential ethical and disruptive effects on individuals, communities, and/or societies. Making policy decisions with large socioeconomic impacts based on often tentative models raises risks of alienating the public upon which modern science largely depends.

Citizens, experts or not, are often invited to contribute to debates and discussions surrounding science and technology at the local and national levels. Yet, many people are not provided with the tools to fully and effectively engage in these discussions, which involves critically analyzing the scope, resolution, and stability of scientific conclusions. As such, the acceptance or rejection of scientific pronouncements is often framed as an instrument of political power, casting a shadow on core scientific principles and processes, framing scientists as partisan players in a political game. The watering down of the role of science and science-based policies in the public sphere, and the broad public complacency associated with (often government-based, regulatory) efforts, is currently being challenged by the international March For Science effort. The core principles and goals of this initiative [link] are well articulated, and, to my mind, representative of a democratic society. However, a single march on a single day is not sufficient to promote a deep social transformation, and promote widespread dispassionate argumentation and critical thinking. Perspectives on how scientific knowledge can help shape current and future events, as well as the importance of recognizing both the implications and limits of science, are perspectives that must be taught early, often, and explicitly. Social or moral decisions are not mutually exclusive from scientific evidence or ideas, but overlap is constrained by the gates set by values that are held.

In this light, I strongly believe the sociopolitical nature of science in practice must be taught alongside traditional science content. Understanding the human, social, economic and broader (ecological) costs of action AND inaction can be used to highlight the importance of framing science in a human context. If the expectation is for members of our society to be able to evaluate and weigh in on scientific debates at all levels, I believe we are morally obligated to supply future generations with the tools required for full participation. This posits that scientists and science educators, together with historian, philosophers, and economists, etc., need to go beyond the teaching of simple facts and theories by considering how these facts and theories developed over time, their impact on people’s thinking, as well as the socioeconomic forces that shape societies. Highlighting the sociopolitical implications of science-based ideas in classrooms can also motivate students to take a greater interest in scientific learning in particular, and related social and political topics in general. It can help close the gap between what is learned in school and what is required for the critical evaluation of scientific applications in society, and how scientific ideas can and should be evaluated when it comes to social policy or person beliefs.

A “science in a social context” approach to science teaching may also address the common student question, “When will I ever use this?” All too often, scientific content in schools is presented in ways that are abstract, decontextualized, and can feel irrelevant to students. Such an approach can leave a student unable or unwilling to engage in meaningful and substantive discussions on the applications and limitations of science in society. The entire concept of including cost-benefit analyses when considering the role of science in shaping decisions is often over-looked, as if scientific conclusions are black and white. Furthermore, the current culture of science in classrooms leaves little room for students to assess how scientific information does and does not align with their cultural identities, often framing science as inherently conflicting or alien, forcing a choice between one way of seeing the world over the other, when a creative synthesis seems more reasonable. Shifting science education paradigms toward a strategy that promotes “education through science” (as opposed to “science through education”) recognizes student needs and motivations as critical to learning, and opens up channels for introducing science as something that is relevant and enriching to their lives. Centered on the German philosophy of Allgemeinbildung [link] that describes “the competence for participation in critical dialogue on currently important matters,” this approach has been found to be effective in motivating students to develop the necessary skills to implement empirical evidence when forming arguments and making decisions.

In extending the idea of the perceived value of science in sociopolitical debates, students can build important frameworks for effectively engaging with society in the future. A relevant example is the increasing accessibility of genome editing technology, which represents an area of science poised to deeply impact the future of society. In a recent report [link] on the ethics of genome editing, assembled by an panel of clinicians and scientists (experts), it is recommended that the United States should proceed — cautiously — with genome editing studies on human embryos. However, as pointed out [link], this panel failed to include ANY public participation in this decision. This effort, fundamentally ignores “a more conscious evaluation of how this impacts social standing, stigma and identity, ethics that scientists often tend to cite pro forma and then swiftly scuttle.” As this discussion increasingly shifts into the mainstream, it will be essential to engage with the public in ways that promote a more careful and thoughtful analysis of scientific issues [link], as opposed to hyperbolic fear mongering (as seen in regard to most GMO discussions)[link] or reserving genetic engineering to the hyper-affluent. Another, more timely example, involves the the level at which an individual’s genome be used to predict a future outcome or set of outcomes, and whether this information can be used by employers in any capacity [link]. By incorporating a clear description of how science is practiced (including the factors that influence what is studied, and what is done with the knowledge generated), alongside the transfer of traditional scientific knowledge, we can help provide future citizens with tools for critical evaluation as they navigate these uncharted waters.

It is also worth noting tcorrupted sciencehat the presentation of science in a sociopolitical contexts can emphasize learning of more than just science. Current approaches to education tend to compartmentalize academic subjects, framing them as standalone lessons and philosophies. Students go through the school day motions, attending English class, then biology, then social studies, then trigonometry, etc., and the natural connections among subject areas are often lost. When framing scientific topics in the context of sociopolitical discussions and debates, stu
dents have more opportunities to explore aspects of society that are, at face value, unrelated to science.

Drawing from lessons commonly taught in American History class, the Manhattan Project [link] offers an excellent opportunity to discuss the fundamentals of nuclear chemistry as well as sociopolitical implications of a scientific discovery. At face value, harnessing nuclear fission marked a dramatic milestone for science. However, when this technology was pursued by the United States government during World War II — at the urging of the famed physicist Albert Einstein and others — it opened up the possibility of an entirely new category of warfare, impacting individuals and communities at all levels. The reactions set off by the Manhattan Project, and the consequent 1945 bombing of Hiroshima and Nagasaki, are ones that are still felt in international power politics, agriculture, medicine, ecology, economics, research ethics, transparency in government, and, of course, the Presidency of the United States. The Manhattan Project represents an excellent case study on the relationship between science, technology, and society, as well as the project’s ongoing influence on these relationships. The double-edged nature often associated with scientific discoveries are important considerations of the scientific enterprise, and should be taught to students accordingly.

A more meaningful approach to science education requires including the social aspects of the scientific enterprise. When considering a heliocentric view of the solar system, it is worthwhile recognizing its social impacts as well as its scientific foundations (particularly before Kepler). If we want people to see science as a human enterprise that can inspire rather than dictate decisions and behaviors, it will require resifting how science — and scientists — are viewed in the public eye. As written here [link]. we need to restore the relationship between scientific knowledge and social goals by specifically recognizing how

'So... cutting my funding, eh? Well, I've got a pair of mutant fists that say otherwise!'
‘So… cutting my funding, eh? Well, I’ve got a pair of mutant fists that say otherwise!’

science can be used, inappropriately, to drive public opinion. As an example, in the context of CO2-driven global warming, one could (with equal scientific validity) seek to reduce CO2 generation or increase CO2 sequestration. Science does not tell us which is better from a human perspective (although it could tell us which is likely to be easier, technically). While science should inform relevant policy, we must also acknowledge the limits of science and how it fits into many human contexts. There is clearly a need for scientists to increase participation in public discourse, and explicitly consider the uncertainties and risks (social, economic, political) associated with scientific observations. Additionally, scientists need to recognize the limits of their own expertise.

A pertinent example was the call by Paul Ehrlich to limit, in various draconian ways, human reproduction – a political call well beyond his expertise. In fact, recognizing when someone has gone beyond what science can legitimately tell us [link] could help rebuild respect for the value of science-based evidence. Scientists and science educators need to be cognizant of these limits, and genuinely listen to the valid concerns and hesitations held by many in society, rather than dismiss them. The application of science has been, and will always be, a sociopolitical issue, and the more we can do to prepare future decision makers, the better society will be.

Jeanne Garbarino, PhD, Director of Science Outreach, The Rockefeller University, NY, NY

Jeanne earned herJGarbarino Ph.D. in metabolic biology from Columbia University, followed by a postdoc in the Laboratory of Biochemical Genetics and Metabolism at The Rockefeller University, where she now serves as Director of Science Outreach. In this role, she works to provide K-12 communities with equitable access to authentic biomedical research opportunities and resources. You can find Jeanne on social media under the handle @JeanneGarb.

Author: Mike Klymkowsky

A professor of Molecular, Cellular, and Developmental Biology at the University of Colorado Boulder (http://orcid.org/0000-0001-5816-9771). I have long standing research interests in phage biology, molecular structure, cytoskeletal and regulatory (signaling) systems, and the improvement of science (biology and chemistry) courses, curricula, and outcomes (see http://klymkowskylab.colorado.edu).

5 thoughts on “From the Science March to the Classroom: Recognizing science in politics and politics in science”

Leave a comment