#overlyhonestmethods – Reaching out with humour

For a week and a half, I was a minor internet celebrity! Pictures by imgur user owamux

Science has an awkward relationship with the public. There’s a perception that we exist in an ivory tower, and the common media perception (as is evident by shows like The Big Bang Theory) is that we’re somewhat socially inept, with a lack of people skills and an inability to talk about our work in a way that others can understand. So I was thrilled when #overlyhonestmethods became a thing. There have been many little science in-jokes floating around the twittersphere; one of my favourites was the hashtag #middleearthpublichealth which came out right before The Hobbit released in theatres. Tweets like “Craving the ‘Precious’: Gollum, a case study of the public health impact of severe ring addiction, Lancet 2010” abounded, and they illustrated public health rather nicely (for more, check out Brett Keller’s blogpost). However, they only catered to a niche audience: public health professionals, and public health professionals who got the Lord of the Rings references. But #overlyhonestmethods was the first that hit the mainstream. There was an outpouring of support for it – sites such as io9 , the Scientific American blog network and even The Telegraph weighed in. But there were criticisms. Simon Williams posted on the PLOS Blog that:

I cannot help but wonder whether, after the dust (and amusement) settles, the status of, and public trust in, the scientific method will have been challenged.

I disagree with my colleague on this and I believe most of the tweets were exaggerated for comedic effect. But, as with most jokes, there may be an element of truth to them. For example, the picture that leads this piece was my tweet (which has since been retweeted over 200 times, and favourited over 100 times). While I did not know any PhD students who have opened a bakery when I wrote that tweet, I do know PhD’s who have left academia to become photographers and wedding planners, as well as other “unconventional” post-PhD paths, and I’m sure many of my colleagues have similar experiences. Funnily enough, after putting up that tweet, I have since been introduced to Bread Science by Emily Buehler, a PhD in Chemistry from UNC Chapel Hill.

I could go on about how most PhDs no longer want to or are able to pursue academic callings, or how the desire to pursue academic career paths decreases the longer you are in a PhD program as per this study in PLOS ONEto highlight the point. But, to be perfectly honest, I wrote that tweet while I was hungry and craving a donut and it made me laugh. I don’t believe that the tweets were written out as a “scientific confessional.” I do not think that most people would risk their careers and scientific integrity because they were too lazy to get up and pick up a beaker across the lab, or choose a company because they gave away cool USB sticks. And if they did, I really doubt they’d voice those opinions on Twitter of all places. What I think is that scientists have a sense of humour about what we do on a day to day basis, and given an audience, we’d love to share those.

“The samples incubated at ambient temperature in a remote border customs office for 5 months” Pictures by imgur user owamux

As scientists, we need to actively reach out and engage the public, a topic that is near and dear to my heart. And I don’t mean paying lip service to science outreach, but actively pursuing opportunities. We’re fighting an uphill battle – the media portrayal of scientists is not flattering, but with some awesome, high profile, and most importantly, credible, scientists, we’re gradually changing that stereotype. My personal science hero is Neil DeGrasse Tyson, but others such as Bill Nye and David Suzuki are also making a case that science isn’t boring. Here at PLOS Blogs, we have our own CitizenSci blog, commenting on this very issue. And at a more grassroots level, organizations such as Let’s Talk Science, This is what a scientist looks like and Science Cheerleaders all challenge the commonly held stereotype that all scientists wear lab coats and goggles. And what better way to challenge that stereotype than showing we have a sense of humour?

Reference Sauermann H, Roach M (2012) Science PhD Career Preferences: Levels, Changes, and Advisor Encouragement. PLoS ONE 7(5): e36307. doi:10.1371/journal.pone.0036307

Facing the research-practice divide in science education

Science education researchers and science teachers have much to offer each other. In an ideal world, knowledge would flow freely between researchers and educators. Unfortunately, research and practice tend to exist in parallel universes. As long as this divide persists, classrooms will rarely benefit from research findings, and research studies will rarely be rooted in the realities of the classroom. If we care about science education, we have to face the research-practice divide.

How did it get this way?

When we talk about research and practice, we’re talking about academics and teachers. In the most typical case, we’re talking about professors of education working at universities, and teachers working at K-12 schools. The divide has its roots in historical and current differences between researchers and teachers in their training, methods, work environment, and career goals that have led to misunderstanding and mistrust. In a 2004 paper titled “Re-Visioning the academic–teacher divide: power and knowledge in the educational community” Jennifer Gore and Andrew Gitlin describe the state of the research-practice divide through the lens of the two groups of people involved, and the imbalance of power between them. Historically, they argue, the framework of science education research has been that researchers generate knowledge and materials that teachers need, but rarely recognize the need for teacher contributions. This assumed one-way flow of knowledge has certainly sparked animosity between the groups, deepened by cultural differences associated with differing career paths.

Of course, some people have been both K-12 teachers and academics in their careers. To get this perspective on the issue I reached out to a colleague, Assistant Professor of Science Education Ron Gray (Northern Arizona University). Ron has been a middle school science teacher, a teacher of science teachers, and is now a science education academic. When I asked him about the experience of transitioning from teacher to academic, he recalled:

“I don’t believe I had seen a single primary research document in education before earning my doctorate.”

Most K-12 science teachers are fairly disconnected from the research world once they leave universities and enter schools. They lack university library access, yet currently many of the best journals in the field, such as the Journal of Research in Science Teaching, Science Education, and the International Journal of Science Education are not open access, and require a per-article fee to read. So how does research reach most teachers? I talked to a few science teachers about where they encounter science education research studies — many used science and education pages on Facebook, one got papers sent from an administrator, and some read practitioner journals. Many science teachers are members of the National Science Teacher’s Association (NSTA), which publishes practitioner journals and holds national and area conferences where teachers can hear about research findings. NSTA plays an invaluable role in working to connect research and practice. However, for perspective, NSTA has about 55,000 members, most but not all of which are practicing science teachers, but there are currently about two million practicing science teachers in the U.S.

The disconnect also stems from unfortunate misperceptions of professors by teachers and teachers by professors. Both groups often discount each other’s knowledge bases and workloads. Professors can harbor elitist attitudes about teachers, discounting the value of practical classroom experience in determining what works in education. Teachers frequently claim that professors suffer from “Ivory Tower Syndrome” — the assumption here is that professors live cushy lives, sheltered from the realities of schools, and therefore can’t produce knowledge that is useful in today’s classrooms. A high school teacher quoted by Gore and Gitlin explained:

“A lot of what [researchers] think is based on the past and they are out of touch. And so we call it the Ivory Tower. Welcome to our world.”

When I asked high school science teacher Laurie Almeida how she perceived the credibility of science education research, she responded:

“Somewhat credible. I work at a difficult school, so I feel that some of the research is way too out of touch with the reality of my school.”

An ivory tower of sorts. Sather Tower, U.C. Berkeley. Photo by Bernt Rostad.
An ivory tower of sorts. Sather Tower, U.C. Berkeley. Photo by Bernt Rostad.

There is sometimes truth to the ivory tower criticisms; Gore and Gitlin noted that in some academic circles, the more closely research is associated with practice, the more devalued it is. Furthermore, science education research is far from perfect. Small-scale studies with limited applicability are published more frequently in science education than they are the natural sciences. This trend hasn’t escaped notice from teachers either. When I asked about the perceived credibility of science education research among teachers, science teacher Toni Taylor told me:

“Too often I see ‘research’ that includes only a small sample population which makes me question the validity of the research,” and “Sometimes I feel like science education simply tries to reinvent the wheel.”

However, a lot of the mistrust between the two groups is based on their misunderstanding of each other’s professions. Teachers do not always appreciate that many researchers are often in the classroom regularly, conducting classroom-based studies and collecting data. This “back of the class” view can be highly illuminating, and is a valid way to know classrooms. Some researchers got their start as K-12 teachers. And higher education is certainly not immune from classroom management issues or over-filled schedules. Professors have stress — just ask the #realForbesProfessors (this hashtag exploded on Twitter following the publication of a Forbes article claiming that professors have one of the least stressful jobs). Similarly, researchers can forget that experienced teachers have a wealth of knowledge about the specific interactions of classroom context, pedagogy, and subject matter.

 

What can be done?

My conversation with Professor Ron Gray about what academics can do to better connect with teachers aligned well with calls in the literature for more researcher-teacher partnerships. He said:

“The best way would be to get back in the classroom but the tenure process just doesn’t let that happen.”

His response highlights the rigidity of teacher and researcher career paths. Even a former teacher who switched to the researcher path can’t switch back again without ultimately losing “traction” in both careers. Perhaps we should question the wisdom of entrenching people interested in science education in one narrowly-defined career trajectory or another. Instead, career advancement could reward the accumulation of diverse but synergistic experiences. Science education is a multidisciplinary endeavor, involving science, social science, and communication skills — why shouldn’t our career options reflect this?

Similarly, certain aspects of teacher training might be due for a change. Teacher education could be a crucial time to break the mold  that has placed researchers as producers and teachers as consumers of research. Gore and Gitlin suggest that student-teachers at the undergraduate or master’s levels could be attached to ongoing education research projects as research assistants. They would become intimately familiar with the purpose and methods of educational research and could become significant contributors to it. This would take some restructuring, as many programs focus on more “immediate” concerns such as classroom management, but the benefit could be the production of teachers who recognize the value of research and feel capable of making contributions to it.

The open access movement in scholarly publishing could also have a crucial role in breaking down barriers. Toll-access journals can function as practically impenetrable “ivory fortresses” where valuable knowledge is locked away from practitioners. However, open access will likely prove necessary, but not sufficient in closing the research-practice gap. Teachers I’ve spoken to are very positive about open access but guarded about how much more time they’ll spend reading research articles. Time is a huge issue for teachers. But the alternative — locking up research findings in places where both time and money can be barrier for teachers — is certainly not helping to connect research with practice.

For the short-term, most education research articles are still in toll-access journals. For those without easy access to the primary literature in science, research blogs have become an incredible resource. However, the science education research blogging community pales in comparison to the science research blogging community. While teachers can find the latest science news and engaging resources to share with their students by following the science blogging community, they are not as likely to find quick-and-easy write-ups of science education research findings that are relevant to their pedagogy, curriculum development, assessment practices. As the Sci-Ed blog establishes itself, I hope that my fellow writers and I can attempt to partially fill this role. And I hope that many others in science education continue to follow the research blogging model.

 

Reference:
Jennifer M. Gore & Andrew D. Gitlin (2004): [RE]Visioning the academic–teacher divide: power and knowledge in the educational community, Teachers and Teaching: Theory and Practice, 10:1, 35-58. 

Science literacy and the polarized politics of climate change

One of the major goals of science education is for all citizens to have some basic level of science literacy. The rationale is that a basic understanding of science is necessary in order to participate in a modern democratic society, where we must often grapple with policy decisions that deal with socioscientific issues, and where scientific evidence can be a major deciding factor in policy.

paper published in Nature Climate Change earlier this year challenged a long-standing assumption in both science education and science communication: that increasing science literacy will increase public “acceptance” of the scientific consensus on the risks posed by climate change. The authors surveyed a representative sample of about 1,500 U.S. adults and found that people with an egalitarian-communitarian worldview (roughly liberal) were more likely to perceive climate change to be higher risk with higher levels of science literacy, while for people with a hierarchical-individualist worldview (roughly conservative), higher science literacy scores meant they were more likely to underestimate the risks associated with climate change. If the assumption that science literacy is the solution had held, both groups would have moved toward rating climate change as higher risk as they increased in science knowledge, to line up with current scientific consensus. Instead, increasing science knowledge correlated with increasingly polarized views.

The paper comes out of Dan Kahan’s cultural cognition project at Yale. Cultural cognition posits that individuals tend to form opinions that cohere with the values and ways of life of the cultural groups they identify with. In other words, people process information in ways that reinforce a sense of belonging to certain cultural groups and identifiers. The central idea is related to confirmation bias, but goes further to define the root causes of the beliefs people seek to confirm: cultural worldviews. Unlike confirmation bias, cultural cognition can predict how people will react to totally new issues, for which they had no prior opinions, based on their worldviews. (For more on distinguishing cultural cognition and confirmation bias, see Kahan’s blog.) In some ways the findings are not all that surprising. Knowing that humans are always striving to confirm their own hunches, opinions, and beliefs, it follows that the addition of more knowledge and argumentation skills just builds the arsenal for developing a stronger defense of one’s preferred view. Janet Raloff at ScienceNews paraphrases Kahan:

“In fact, some of the most science-literate critics [of climate science] will listen to experts only to generate compelling counter-arguments.”

This isn’t just about conservatives denying science. Both liberals and conservatives have been found to diverge from scientific consensus on issues that have the potential to either reinforce or threaten their identities, values, and worldviews (for example, on the issue of the right to carry concealed handguns – see Kahan et al. 2010). Furthermore, it isn’t about denying or mistrusting science as an institution; instead, people are developing different perceptions about what the science actually says. Both sides try to “claim” science for their side.

Lone polar bear on sea ice. Photo by fruchtwerg’s world.

But what does this mean for science education? The findings pose more questions than answers. It would be a mistake to think that science literacy is useless — or even dangerous — because it might act as a polarizing force. Without it, citizens would have little basis or inclination to engage with socioscientific issues at all — hardly the recipe for a functioning democracy. So it is necessary, but not sufficient. However, the findings strongly suggest that a simplistic “deficit” model, in which students/citizens are blank slates that just need to be filled up with science facts and information, clearly won’t work.

It’s worth noting how the authors were measuring science literacy. They employed a combined science literacy/numeracy scale. Eight science literacy items, which were taken from the National Science Foundation’s Science and Engineering Indicators, probed relatively simple factual knowledge about biology and physics with true/false statements (for example, “electrons are smaller than atoms”). No items testing understanding of the scientific method were used, though previous research using the items has shown decent correlation between the facts and methods dimensions. Mathematical word problems were used to measure numeracy; these were included because more numerate people tend to be disposed to more accurate, methodical modes of thinking, especially with regard to decision making and risk assessment (system 2, according to Daniel Kahneman). However, the measure is limited by not being able to discern a high level of competence in science. It can distinguish those who know little science from those who know a bit more, but even a person who was able to correctly answer all eight items could not necessarily be said to be “science literate.” We can say the items measured some science knowledge plus tendency to think more slowly and analytically, but not “science literacy.” An unanswered question is how to accurately measure the multi-dimensional concept of science literacy — but the initial indications from this study are certainly noteworthy and concerning.

The results of this paper should prompt us to reexamine what is most important in science literacy, and therefore in science education. While most of the discussions of these results have been couched in science communication issues (how scientists and the media reach out to adult non-scientist citizens), K-12 science educators potentially have a huge opportunity to educate a new generation of citizens in a way that could reduce the risks of polarization. What strategies might accomplish this goal? My ponderings that follow below are just conjecture, but can hopefully generate some conversation from the science education perspective.

One possibility is that by emphasizing the nature and process of science more than the “consensus” textbook facts, students will understand what to look for in good science and develop structured, rational habits of mind. A crucial aspect of science is that it’s OK to be wrong. A hypothesis doesn’t have to be right in order to learn something important from the evidence collected. Scientists throw out their old theories if new ones are a better fit for the data. It’s about having an open mind and even challenging the established consensus when the evidence is strong. When people use their knowledge exclusively for the purposes of proving their opinion is right, and see data that contradicts their opinions as simply the next challenge to rebut, they aren’t thinking like scientists. Perhaps examples and experiences of surprising or negative results might serve to get students thinking like scientists, even in the face of cultural predispositions or prior beliefs.

A strong emphasis on critical response skills might also limit the polarizing effects of knowledge. Part of the reason climate change deniers are able to use their knowledge to entrench themselves further in their chosen viewpoint is that they are focussing on — and finding — less scientifically credible data sources. Through biased search, they are discovering the few dissenting scientists, or pundits who mix facts with opinion. Sharper critical response skills would make the flaws and weaknesses in their favored data sources stand out. If all students are exposed to in science class is their textbooks and lab manuals (which are always “right”), how will they learn to evaluate sources of scientific data?

Just as we can’t assume adult citizens are blank slates, neither can we assume young students are blank slates. Even when dealing with non-polarized naive ideas about science, prior knowledge and conceptions must be taken into account in helping students move to a more scientific understanding. Science educators should be aware of the cultural allegiances their students may have, and should attempt to frame discussions of polarizing concepts in ways that are not immediately and totally opposed to those allegiances. Students could be exposed to cases in which many different socio-political groups have been known to twist or misrepresent science to serve their purposes (see GMO Opponents are the Climate Skeptics of the Left) and learn to recognize these ulterior motives.

Young students are dealing with issues of identity, which poses both a challenge and an opportunity. There is an opportunity for scientific thinking (as a useful, impartial, non-partisan intellectual tool) to become part of students’ cultural identities. By fostering a collegial environment where controversial issues can be discussed openly and civilly, science educators could help reduce the fear and antagonism individuals can face when supporting an idea that is perceived as discordant with the prevailing worldview. Of course, science educators often face their own sources of conflict from parents, students, and even themselves when it comes to controversial topics like climate change and evolution.

The problem of polarization is a puzzling one, but the stakes are high, and science educators will play a pivotal role in preparing future policymakers.